右旋糖酐酶开发及应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on the Development and Application of Dextranase
  • 作者:常国炜 ; 黄曾慰 ; 黎志德 ; 梁达奉
  • 英文作者:CHANG Guo-wei;HUANG Zeng-wei;LI Zhi-de;LIANG Da-feng;Guangdong Provincial Bioengineering Institute(Guangzhou Sugarcane Industry Research Institute) Guangdong Provincial Engineering and Technique Research Centre of Enzyme and Biocatalysis;
  • 关键词:右旋糖酐酶 ; 右旋糖酐 ; 生物被膜 ; 制糖 ; 血浆代用品
  • 英文关键词:dextranase;;dextran;;biofilm;;sugar manufacturing;;plasma substitute
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:广东省生物工程研究所(广州甘蔗糖业研究所)广东省酶制剂与生物催化工程技术研发中心;
  • 出版日期:2019-03-18 15:34
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.323
  • 基金:广东省酶制剂与生物催化工程技术研究中心资助项目
  • 语种:中文;
  • 页:SWJT201906027
  • 页数:9
  • CN:06
  • ISSN:11-2396/Q
  • 分类号:202-210
摘要
右旋糖酐酶是一类能特异性催化右旋糖酐中α-1,6-糖苷键水解的酶,其作用底物——右旋糖酐则是蔗糖经某些微生物发酵生成的高分子葡萄糖聚合物。右旋糖酐被广泛应用于医药、食品、材料等领域,但也给口腔健康、制糖生产等带来不良影响。随着人们对右旋糖酐、右旋糖酐水解物及其他多糖研究的深入,右旋糖酐酶发挥着越来越重要的作用,但右旋糖酐酶制剂的整体开发水平仍不高,应用深度仍有限。综述了右旋糖酐酶菌种构建、发酵、纯化、固定化、酶学性质表征、酶活性增强等多个方面的开发研究,以及右旋糖酐酶在制糖、食品、医药、材料等领域的应用研究进展,其中包括本团队在开发和应用方面的研究成果,讨论了在开发和应用过程中存在的问题,并对未来的开发和应用研究方向进行了展望。
        Dextranase is a kind of enzyme that can specifically catalyzes the hydrolysis of α-1,6-glucosidic bonds on dextran. Dextran,the substrate of dextranase,is a glucan produced by the fermentation of sucrose via some microorganisms. Dextran is widely used in medicine,food,materials and other fields,but it brings the adverse effects on oral health,sugar production,etc. Studies on dextran,dextran hydrolysates and other polysaccharides are getting increasingly advanced and dextranase plays an increasingly important role;but the overall development level of dextranase preparation is still not high and its application is still limited. This review summarizes the development and researches on the construction of dextranase-producing strains,fermentation and purification of dextranase,dextranase immobilization,characterization of enzymatic properties,enzyme activity enhancement,etc.,as well as the research progresses on applying dextranase in sugar production,food,medicine and materials,including the research results in our team. Then the paper discusses the issues in the development and application and prospects the future research and development directions.
引文
[1] Naessens M, Cerdobbel A, Soetaert W, et al. Leuconostoc dextransucrase and dextran:production, properties and applications[J]. J Chem Technol Biotechnol, 2005, 80(8):845-860.
    [2] Wales M, Marshall PA, Weissberg SG. Intrinsic viscosity-molecular weight relationships for dextran[J]. Journal of Polymer Science,1953, 10(2):229-240.
    [3] Flemming HC, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633.
    [4] Li W, Liu H, Xu Q. Extracellular dextran and DNA affect the formation of Enterococcus faecalis biofilms and their susceptibility to2%chlorhexidine[J]. J Endod, 2012, 38(7):894-898.
    [5]Chen L, Ding D, et al. Selective enrichment of N-linked glycopeptides and glycans by using a dextran-modified hydrophilic material[J]. Journal of Separation Science, 2018, 41(9):2003-2011.
    [6] Wang L, Li X, Sun T, et al. Dual-functional dextran-PEG hydrogel as an antimicrobial biomedical material[J]. Macromolecular Bioscience, 2018, 18(2):1700325.
    [7] Oliver S, Yee E, Kavallaris M, et al. Water soluble antioxidant dextran-quercetin conjugate with potential anticancer properties[J].Macromolecular Bioscience, 2018, 1700239.
    [8]梁达奉.α-葡聚糖酶的基因工程菌构建、发酵及其应用研究[D].广州:广东工业大学, 2011.
    [9]梁达奉,黄曾慰,曾练强,等.α-葡聚糖酶在毕赤酵母中的组成型表达[J].华南理工大学学报:自然科学版, 2012, 40(5):96-100.
    [10]黄曾慰,梁达奉,曾练强,等.朱黄青霉α-葡聚糖酶在毕赤酵母中的高效表达[J].广西科学, 2014(6):614-618.
    [11] Wang D, Lu M, Wang S, et al. Purification and characterization of a novel marine Arthrobacter oxydans KQ11 dextranase[J].Carbohydrate Polymers, 2014, 106(1):71-76.
    [12] Wang X, Lu M, Wang S, et al. The atmospheric and roomtemperature plasma(ARTP)method on the dextranase activity and structure[J]. International Journal of Biological Macromolecules, 2014, 70(8):284-291.
    [13] Jiao YL, Wang SJ, Lv MS, et al. Characterization of a marinederived dextranase and its application to the prevention of dental caries[J]. J Ind Microbiol Biotechnol, 2014, 41(1):17-26.
    [14] Cai R, Lu M, Fang Y, et al. Screening, production, and characterization of dextranase from Catenovulum sp.[J]. Annals of Microbiology, 2014, 64(1):147-155.
    [15] Kiran T, Asad W, et al. Industrially important hydrolytic enzyme diversity explored in stove ash bacterial isolates[J]. Pakistan Journal of Pharmaceutical Sciences, 2015, 28(6):2035-2040.
    [16] Zohra RR, Aman A, Ansari A, et al. Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBGE-IB25[J]. International Journal of Biological Macromolecules, 2015, 78:243-248.
    [17] Zhang YQ, Li RH, Zhang HB, et al. Purification, characterization,and application of a thermostable dextranase from Talaromyces pinophilus[J]. J Ind Microbiol Biotechnol, 2017, 44(2):317-327.
    [18] Picozzi C, Meissner D, Chierici M, et al. Phage-mediated transfer of a dextranase gene in Lactobacillus sanfranciscensis and characterization of the enzyme[J]. International Journal of Food Microbiology, 2015, 202:48-53.
    [19] Kim JK, Shin SY, Moon JS, et al. Isolation of dextran-hydrolyzing intestinal bacteria and characterization of their dextranolytic activities[J]. Biopolymers, 2015, 103(6):321-327.
    [20] Sarbini SR, Kolida S, Naeye T, et al. In vitro fermentation of linear andα-1, 2-branched dextrans by the human fecal microbiota[J].Appl Environ Microbiol, 2011, 77(15):5307-5315.
    [21] Olano-Martin E, Mountzouris KC, Gibson GR, et al. In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria[J]. Br J Nutr, 2000, 83(3):247-255.
    [22] Goffin D, Delzenne N, Blecker C, et al. Will isomaltooligosaccharides, a well-established functional food in Asia,break through the european and American market? The status of knowledge on these prebiotics[J]. Critical Reviews in Food Science&Nutrition, 2011, 51(5):394-409.
    [23]吴兆鹏,梁达奉,曾练强,等.毕赤酵母产α-葡聚糖酶发酵工艺研究[J].粮油食品科技, 2010, 18(2):29-31.
    [24]梁达奉,吴兆鹏,曾练强,等.重组毕赤酵母产α-葡聚糖酶甲醇流加控制的研究[J].甘蔗糖业, 2011(5):21-27.
    [25]吴兆鹏,曾练强,黄曾慰,等.重组毕赤酵母发酵甘油制备α-葡聚糖酶的研究[J].广西科学, 2014(6):624-628.
    [26]吴兆鹏,梁达奉,黄曾慰,等.葡萄糖对组成型毕赤酵母发酵产α-葡聚糖酶的影响[J].广西糖业, 2015(6):16-21.
    [27]黄曾慰,吴兆鹏,常国炜,等.重组毕赤酵母发酵生产α-葡聚糖酶的放大研究[J].甘蔗糖业, 2016(2):20-26.
    [28]曹研研,张洪斌,李若菡,等.棘孢青霉菌发酵产右旋糖酐酶的条件优化[J].食品科学, 2015, 36(23):215-220.
    [29]张泽栋,刘继栋,陆海勤,等.低频超声场促进细丽毛壳菌发酵生产α葡聚糖酶的研究[J].食品工业科技, 2015, 36(5):161-165.
    [30]黎志德,常国炜,黄曾慰,等.大孔型离子交换树脂分离纯化右旋糖酐酶[J].甘蔗糖业, 2015(4):58-64.
    [31]黎志德,蚁细苗,黄思鸿,等.聚乙二醇-硫酸铵双水相体系萃取α-葡聚糖酶[J].甘蔗糖业, 2013(1):38-42.
    [32]黎志德,曾练强,蚁细苗,等.右旋糖酐酶的保存稳定性研究[J].广西蔗糖, 2013(4):31-34.
    [33] Wang D, Lu M, Wang X, et al. Improving stability of a novel dextran-degrading enzyme from marine Arthrobacter oxydans KQ11[J]. Carbohydrate Polymers, 2014, 103(1):294-299.
    [34] Bertrand E, Pierre G, Delattre C, et al. Dextranase immobilization on epoxy CIM( )disk for the production of isomaltooligosaccharides from dextran[J]. Carbohydrate Polymers, 2014, 111(111):707-713.
    [35] Shahid F, Aman A, Nawaz MA, et al. Chitosan hydrogel microspheres:an effective covalent matrix for crosslinking of soluble dextranase to increase stability and recycling efficiency[J]. Bioprocess Biosyst Eng, 2017, 40(3):451-461.
    [36] Bashari M, Abdelhai MH, Abbas S, et al. Effect of ultrasound and high hydrostatic pressure(US/HHP)on the degradation of dextran catalyzed by dextranase[J]. Ultrasonics Sonochemistry,2014, 21(1):76-83.
    [37] Bashari M, Jin Z, Wang J, et al. A novel technique to improve the biodegradation efficiency of dextranase enzyme using the synergistic effects of ultrasound combined with microwave shock[J]. Inno Food Sci Emerg, 2016, 35:125-132.
    [38] Yi L, Sun X, Du K, et al. UP-HILIC-MS/MS to Determine the action pattern of Penicillium sp. dextranase[J]. Journal of the American Society for Mass Spectrometry, 2015, 26(7):1174-1185.
    [39] Suzuki N, Kishine N, Fujimoto Z, et al. Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus[J].J Biochem, 2015, 159(3):331-339.
    [40] Okazawa Y, Miyazaki T, Yokoi G, et al. Crystal structure and mutational analysis of isomalto-dextranase, a member of glycoside hydrolase family 27[J]. Journal of Biological Chemistry, 2015,290(43):26339-26349.
    [41] Bhatia S, Bhakri G, Arora M, et al. Kinetic and thermodynamic properties of partially purified dextranase from Paecilomyces lilacinus and its application in dextran removal from cane juice[J]. Sugar Tech, 2016, 18(2):1-10.
    [42] Ko JA, Nam SH, Kim D, et al. Identification of catalytic amino acid residues by chemical modification in dextranase[J]. J Microbiol Biotechnol, 2016, 26(5):837-845.
    [43] Gibbons RJ, Fitzgerald RJ. Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques[J]. J Bacteriol, 1969, 98(2):341-346.
    [44] Caldwell RC, Sandham HJ, Jr WVM, et al. 1. The effect of a dextranase mouthwash on dental plaque in young adults and children[J]. J Am Dent Assoc, 1971, 82(1):124-131.
    [45] Wang X, Cheng H, Lu M, et al. Dextranase from Arthrobacter oxydans KQ11-1 inhibits biofilm formation by polysaccharide hydrolysis[J]. Biofouling, 2016, 32(10):1223-1233.
    [46] Yang YM, Jiang D, Qiu YX, et al. Effects of combined exogenous dextranase and sodium fluoride on Streptococcus mutans 25175monospecies biofilms[J]. Am J Dent, 2013, 26(5):239-243.
    [47] Pierro FD, Zanvit A, Nobili P, et al. Cariogram outcome after 90days of oral treatment with Streptococcus salivarius M18 in children at high risk for dental caries:results of a randomized, controlled study[J]. Clin Cosm Invest Dent, 2015, 7(7):107-113.
    [48] Qiu YX, Mao MY, Jiang D, et al. Co-operative effect of exogenous dextranase and sodium fluoride on multispecies biofilms[J].Journal of Dental Sciences, 2016, 11(1):41-47.
    [49] Senpuku H, Yonezawa H, Yoneda S, et al. SMU. 940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans[J]. Mol Oral Microbiol, 2017, 33(1):47-58.
    [50] Otsuka R, et al. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation[J]. Microbiol Immunol, 2015, 59(1):28-36.
    [51]梁达奉,曾练强,郭亭,等.葡聚糖对制糖工业的影响及对策(上)[J].甘蔗糖业, 2008(3:28-33.
    [52]钟志才,马步,徐杰荣,等.葡聚糖酶应用于甘蔗制糖过程的试验研究[J].甘蔗糖业, 2014(3):41-46.
    [53]姚满芳,常国炜,韦红桥,等.葡聚糖酶在甘蔗制糖过程的应用试验研究[J].甘蔗糖业, 2015(6):18-22.
    [54]马步,常国炜,蚁细苗,等.葡聚糖酶在原糖精炼生产中的应用研究[J].广西糖业, 2014(3):18-21.
    [55] Fadel, Zohri ANA, El-Dean AMK, et al. Enhancing ethanol yield from sugar cane molasses fermentation by addition of depolymerising enzymes[J]. Indian Journal of Applied Research,2016, 6(8):291-294.
    [56]国家药典委员会.中华人民共和国药典[M].二部.北京:中国医药科技出版社, 2015.
    [57] Editorial Board of Japanese Pharmaceutical Bureau. The Japanese Pharmacopoeia[M]. 17th ed. Japan:Ministry of Health, Labour and Welfare, 2016.
    [58] British Pharmacopoeia Commission. British Pharmacopoeia[M].2017 ed. England:The Stationery Office, 2017.
    [59] European Pharmacopoeia Commission. European Pharmacopoeia[M]. 9th ed. France:European Directorate for Quality Medicines,2018.
    [60]常国炜,梁达奉,张九花,等.发酵耦合酶解高效制备右旋糖酐工艺研究[J].广西科学, 2014(6):619-623.
    [61] Gibson GR, Probert HM, Loo JV, et al. Dietary modulation of the human colonic microbiota:updating the concept of prebiotics[J]. Journal of Nutrition, 1995, 125(6):1401-1412.
    [62] Li J, Tan B, Mai K. Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp(Litopenaeus vannamei)[J].Aquaculture, 2009, 291(1-2):35-40.
    [63] Chung CH, Day DF. Efficacy of Leuconostoc mesenteroides(ATCC13146)isomaltooligosaccharides as a poultry prebiotic[J].Poultry Science, 2004, 83(8):1302-1306.
    [64] Kaneko T, Kohmoto T, Kikuchi H, et al. Effects of Isomaltooligosaccharides with Different Degrees of Polymerization on Human Fecal Bifidobactcria[J]. Journal of the Agricultural Chemical Society of Japan, 1994, 58(12):2288-2290.
    [65] Chen HL, Lu YH, Lin JJ, et al. Effects of isomalto-oligosaccharides on bowel functions and indicators of nutritional status in constipated elderly men[J]. J Am Coll Nutr, 2001, 20(1):44-49.
    [66] Gan W, Zhang H, et al. Biosynthesis of oligodextrans with different Mw by synergistic catalysis of dextransucrase and dextranase[J].Carbohydrate Polymers, 2014, 112(21):387-395.
    [67] Chalane S, Delattre C, Michaud P, et al. Optimized endodextranaseepoxy CIM Disk reactor for the continuous production of molecular weight-controlled prebiotic isomalto-oligosaccharides[J].Process Biochemistry, 2017, 58:105-113.
    [68] Tingirikari JMR, Gomes WF, Rodrigues S. efficient production of prebiotic gluco-oligosaccharides in orange juice using immobilized and Co-immobilized dextransucrase[J]. Applied Biochemistry&Biotechnology, 2017, 183(4):1-17.
    [69] Ferreira MPA, Talman V, Torrieri G, et al. Dual-drug delivery using dextran-functionalized nanoparticles targeting cardiac fibroblasts for cellular reprogramming[J]. Advanced Functional Materials,2018, 28(15):1705134.
    [70] Fan Y, Yi J, Zhang Y, et al. Fabrication of curcumin-loaded bovine serum albumin(BSA)-dextran nanoparticles and the cellular antioxidant activity[J]. Food Chemistry, 2018, 239:1210-1218.
    [71] Riahi N, Liberelle B, Henry O, et al. Impact of RGD amount in dextran-based hydrogels for cell delivery[J]. Carbohydrate Polymers, 2017, 161:219-227.
    [72] Widenbring R, Frenning G, Malmsten M. Chain and pore-blocking effects on matrix degradation in protein-loaded microgels[J].Biomacromolecules, 2014, 15(10):3671-3678.
    [73] Kim W, Yang Y, Kim D, et al. Conjugation of metronidazole with dextran:a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes[J]. Drug Design Development&Therapy,2017, 11:419-429.
    [74] Rai G, Yadav AK, Jain NK, et al. Enteric-coated epichlorohydrin crosslinked dextran microspheres for site-specific delivery to colon[J]. Drug Dev Ind Pharm, 2015, 41(12):2018-2028.
    [75] Chu CW, Ryu JH, Jeong YI, et al. Redox-Responsive nanophotosensitizer composed of chlorin e6-conjugated dextran for photodynamic treatment of colon cancer cells[J]. Journal of Nanomaterials, 2016, 2016(20):1-12.
    [76] Guzman GYF, Hurtado GB, Ospina SA. New dextransucrase purification process of the enzyme produced by Leuconostoc mesenteroides IBUN 91. 2. 98 based on binding product and dextranase hydrolysis[J]. J Biotechnol, 2018, 265:8-14.
    [77] Matsuzaki C, Takagaki C, Tomabechi Y, et al. Structural characterization of the immunostimulatory exopolysaccharide produced by Leuconostoc mesenteroides strain NTM048[J].Carbohydr Res, 2017, 448:95-102.
    [78] Vasileva T, Bivolarski V, Michailova G, et al. Glucansucrases produced by fructophilic lactic acid bacteria Lactobacillus kunkeei H3 and H25 isolated from honeybees[J]. Journal of Basic Microbiology, 2016, 57(1):68-77.
    [79] Miao M, Bai A, Jiang B, et al. Characterisation of a novel watersoluble polysaccharide from Leuconostoc citreum SK24. 002[J].Food Hydrocolloids, 2014, 36(5):265-272.
    [80] Hector S, Willard K, Bauer R, et al. Diverse Exopolysaccharide producing bacteria isolated from milled sugarcane:Implications for cane spoilage and sucrose yield[J]. PLoS One, 2015, 10(12):e0145487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700