固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Fe_3O_4/Nitrogen-doped Graphene Composite via Solid-state Shear Pan-milling Method and Its Application in Lithium Ion Battery
  • 作者:王青福 ; 刘新刚 ; 康文彬 ; 张楚虹
  • 英文作者:WANG Qingfu;LIU Xingang;KANG Wenbin;ZHANG Chuhong;State Key Laboratory of Polymer Materials Engineering,Polymer Research Institute,Sichuan University;
  • 关键词:四氧化三铁/氮掺杂石墨烯复合材料 ; 固相剪切磨盘碾磨 ; 锂离子电池
  • 英文关键词:Fe3O4/nitrogen-doped graphene composite;;solid-state shear pan-milling;;lithium ion battery
  • 中文刊名:CLDB
  • 英文刊名:Materials Review
  • 机构:四川大学高分子研究所高分子材料工程国家重点实验室;
  • 出版日期:2018-11-10
  • 出版单位:材料导报
  • 年:2018
  • 期:v.32
  • 基金:国家973重大科学研究计划青年科学家专项(2013CB934700);; 国家自然科学基金(51222305;51673123);; 四川省科技计划项目青年基金(2016JQ0049)
  • 语种:中文;
  • 页:CLDB201821002
  • 页数:8
  • CN:21
  • ISSN:50-1078/TB
  • 分类号:15-22
摘要
固相剪切磨盘碾磨法是一种基于全固相反应、不同于传统球磨方法制备微纳米基功能复合材料的新方法。本文以石墨和纳米四氧化三铁为原料,三聚氰胺为氮掺杂剂,采用固相剪切磨盘碾磨法,成功制备了四氧化三铁/氮掺杂石墨烯复合材料(Fe_3O_4/N-G)。通过X射线衍射(XRD)、拉曼光谱(RM)、透射电镜(TEM)、X射线光电子能谱(XPS)、比表面积(BET)测试和电化学测试对样品结构、形貌和电化学性能进行表征。测试结果显示:该方法能够在将石墨剥离成少数层石墨烯的同时,实现石墨烯的氮掺杂以及与Fe_3O_4的均匀复合,最终制得Fe_3O_4/N-G复合材料;将该复合材料作为锂离子电池负极材料,表现出优异的循环稳定性,在100mA·g-1的电流密度下经过100次循环后,Fe_3O_4/N-G可逆比容量保持在869 mAh·g-1,远高于纯Fe_3O_4的78mAh·g-1。该方法为制备石墨烯基复合电极材料提供了绿色环保、简便易行的新方法。
        Different from traditional ball milling,solid-state shear pan-milling is an innovative approach that enables the synthesis of functional micro-and nano-composites.When graphite and nanometer scale Fe_3O_4 are applied as the raw material and melamine as the nitrogen doping agent,a composite of Fe_3O_4 and N-doped graphene(Fe_3O_4/N-G)could be successfully synthesized by employing the solid-state shearing pan-milling method.After characterization by X-ray diffraction(XRD),Raman spectroscopy(RM),transmission electronic microscopy(TEM),X-ray photoelectron spectroscopy(XPS),Brunauer,Emmett and Teller analysis(BET)and electrochemical measurements,it is found that graphite could be exfoliated into few-layered graphene while simultaneously doped by nitrogen and composited with Fe_3O_4 uniformly.When applied as an anode for lithium ion battery,an excellent cycling stability with a reversible capacity of 869 mAh·g-1 after 100 cycles at 100 mA·g-1 is delivered,which is far superior to pristine Fe_3O_4 with only 78 mAh·g-1 retained.The technique provides a green,and facile method for the preparation of graphene based composite electrode materials.
引文
1 Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359.
    2 Hui W,Yi C.Designing nanostructured Si anodes for high energy lithium ion batteries[J].Nano Today,2012,7(5):414.
    3 Lin K Z,Wang X L,Xu Y H.Recent development of tin-based materials as anode of the lithium ion battery[J].Chinese Journal of Power Sources,2005,1:019
    4 Poizot P,Laruelle S,Grugeon S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature,2001,32(3):496.
    5 Zhang W M,Wu X L,Hu J S,et al.Carbon coated Fe3O4nanospindles as a superior anode material for lithium-ion batteries[J].Advanced Functional Materials,2010,18(24):3941.
    6 Cui Z M,Jiang L Y,Song W G,et al.High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4nanocrystals and their application in lithium-ion batteries[J].Chemistry of Materials,2015,21(6):1162.
    7 Guo C,Wang L,Zhu Y,et al.Fe3O4nanoflakes in an N-doped carbon matrix as high-performance anodes for lithium ion batteries[J].Nanoscale,2015,7(22):10123.
    8 Muraliganth T,Murugan A V,Manthiram A.ChemInform abstract:Facile synthesis of carbon-decorated single-crystalline Fe3O4nanowires and their application as high performance anode in lithium ion batteries[J].Chemical Communications,2009,41(47):7360.
    9 Liu H,Wang G,Wang J,et al.Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries[J].Electrochemistry Communications,2008,10(12):1879.
    10 Ma F X,Wu H B,Xu C Y,et al.Self-organized sheaf-like Fe3O4/C hierarchical microrods with superior lithium storage properties[J].Nanoscale,2015,7(10):4411.
    11 Geim A K.Graphene:Status and prospects[J].Science,2009,324(5934):1530.
    12 Zhou G,Wang D W,Li F,et al.Graphene-wrapped Fe3O4anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J].Chemistry of Materials,2010,22(18):5306.
    13 Li X,Huang X,Liu D,et al.Synthesis of 3Dhierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery[J].Journal of Physical Chemistry C,2011,115(44):21567.
    14 Su J,Cao M,Ren L,et al.Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties[J].Journal of Physical Chemistry C,2011,115(30):14469.
    15 Wu Z S,Ren W,Xu L,et al.Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J].ACS Nano,2011,5(7):5463.
    16 Liu C,Liu X G,Tan J,et al.Nitrogen-doped graphene by all-solidstate ball-milling graphite with urea as a high-power lithium ion battery anode[J].Journal of Power Sources,2017,342:157.
    17 Liu Z W,Peng F,Wang H J,et al.Phosphorus-doped graphite layers with high electrocatalytic activity for the O2reduction in an alkaline medium[J].Angewandte Chemie International Edition,2011,50(14):3257.
    18 Liu Y,Huang K,Luo H,et al.Nitrogen-doped graphene-Fe3O4architecture as anode material for improved Li-ion storage[J].RSC Advances,2014,4(34):17653.
    19 Jiao J,Qiu W,Tang J,et al.Synthesis of well-defined Fe3O4,nanorods/N-doped graphene for lithium-ion batteries[J].Nano Research,2016,9(5):1.
    20 Jiang Z J,Jiang Z.Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries[J].ACS Applied Materials&Interfaces,2014,6(21):19082.
    21 Zhu H,Cao Y,Zhang J,et al.One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithiumion batteries[J].Journal of Materials Science,2016,51(8):3675.
    22 Wei P,Bai S.Fabrication of a high-density polyethylene/graphene composite with high exfoliation and high mechanical performance via solid-state shear milling[J].RSC Advances,2015,5(114):93697.
    23 Li Z Q,Lu C J,Xia Z P,et al.X-ray diffraction patterns of graphite and turbostratic carbon[J].Carbon,2007,45(8):1686.
    24 Jeon I Y,Choi H J,Ju M J,et al.Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion[J].Scientific Reports,2013,3(30):2260.
    25 Zhang M,Liu L,He T,et al.Melamine assisted solid exfoliation approach for the synthesis of few-layered fluorinated graphene nanosheets[J].Materials Letters,2016,171:191.
    26 Li L,Dou Y,Wang L,et al.One-step synthesis of high-quality Ndoped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances[J].RSC Advances,2014,4(49):25658.
    27 Chen S,Duan J,Ran J,et al.N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst[J].Energy&Environmental Science,2013,6(12):3693.
    28 Lin Y C,Lin C Y,Chiu P W.Controllable graphene N-doping with ammonia plasma[J].Applied Physics Letters,2010,96(13):133110.
    29 Lu W,Shen Y,Xie A,et al.Green synthesis and characterization of superparamagnetic Fe3O4,nanoparticles[J].Journal of Magnetism&Magnetic Materials,2010,322(13):1828.
    30 Wal R L V,Tomasek A J,Pamphlet M I,et al.Analysis of HRTEM images for carbon nanostructure quantification[J].Journal of Nanoparticle Research,2004,6(6):555.
    31 Zhang C,Fu L,Liu N,et al.Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J].Advanced Materials,2011,23(8):1020.
    32 Qin G,Fang Z,Wang C.Template free construction of a hollow Fe3O4architecture embedded in an N-doped graphene matrix for lithium storage[J].Dalton Transactions,2015,44(12):5735.
    33 Liu Y,Yu L,Ong C N,et al.Nitrogen-doped graphene nanosheets as reactive water purification membranes[J].Nano Research,2016,9(7):1983.
    34 Geng D,Yang S,Zhang Y,et al.Nitrogen doping effects on the structure of graphene[J].Applied Surface Science,2011,257(21):9193.
    35 Sivakkumar S R,Milev A S,Pandolfo A G.Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors[J].Electrochimica Acta,2011,56(27):9700.
    36 Shan H,Li X,Cui Y,et al.Sulfur/nitrogen dual-doped porous graphene aerogels enhancing anode performance of lithium ion batteries[J].Electrochimica Acta,2016,205:188.
    37 Wang L,Yu Y,Chen P C,et al.Electrospinning synthesis of C/Fe3O4,composite nanofibers and their application for high performance lithium-ion batteries[J].Journal of Power Sources,2008,183(2):717.
    38 Wang J Z,Zhong C,Wexler D,et al.Graphene-encapsulated Fe3O4nanoparticles with 3Dlaminated structure as superior anode in lithium ion batteries[J].Chemistry(Weinheim an der Bergstrasse,Germany),2011,17(2):661.
    39 Jin S,Deng H,Long D,et al.Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes[J].Journal of Power Sources,2011,196(8):3887.
    40 Fu C,Zhao G,Zhang H,et al.A facile route to controllable synthesis of Fe3O4/graphene composites and their application in lithiumion batteries[J].International Journal of Electrochemical Science,2014,9(1):46.
    41 Bhuvaneswari S,Pratheeksha P M,Anandan S,et al.Efficient reduced graphene oxide grafted porous Fe3O4composite as a high performance anode material for Li-ion batteries[J].Physical Chemistry Chemical Physics,2014,16(11):5284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700