304不锈钢冷加工过程中应力-应变本构方程的建立与验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Establishment and validation of stress-strain constitutive equation during cold working of 304 stainless steel
  • 作者:李凯 ; 薛河 ; 崔英浩 ; 王帅 ; 王婷
  • 英文作者:LI Kai;XUE He;CUI Ying-hao;WANG Shuai;WANG Ting;College of Mechanical Engineering,Xi'an University of Science and Technology;
  • 关键词:304不锈钢 ; 加工硬化 ; 本构方程 ; 力学性能
  • 英文关键词:304 austenitic stainless;;work hardening;;constitutive equation;;mechanical property
  • 中文刊名:SXGC
  • 英文刊名:Journal of Plasticity Engineering
  • 机构:西安科技大学机械工程学院;
  • 出版日期:2019-03-08 09:50
  • 出版单位:塑性工程学报
  • 年:2019
  • 期:v.26;No.135
  • 基金:国家自然科学基金资助项目(51475362)
  • 语种:中文;
  • 页:SXGC201902032
  • 页数:8
  • CN:02
  • ISSN:11-3449/TG
  • 分类号:231-238
摘要
在室温条件下,以静态单轴拉伸为例,采用理论分析、物理实验和数值模拟相结合的方法研究了冷加工对核电结构常用材料304奥氏体不锈钢力学性能的影响规律,在此基础上建立了应力-应变近似数学关系式,并分析了式中各系数与拉伸量之间的定量关系。结果表明:室温条件下,在静态单轴拉伸过程中,随着拉伸量的增大,304奥氏体不锈钢硬度、强度均增大,且应力、应变关系满足线性强化模型,力学性能对应变速率敏感性较弱。为了保证所建近似数学模型的准确性,后续在不同拉伸量和应变速率条件下对模型进行验证,数值模拟结果与物理实验能较好的吻合。
        Taking static uniaxial stretching at room temperature as an example,the influence law of cold working on the mechanical properties of 304 austenitic stainless steel commonly used in nuclear power structure was studied by combined methods of theoretical analysis,physical experiment and numerical simulation. Based on this,a stress-strain approximate mathematical relationship was established,in which the quantitative relationship between the coefficients and the tensile amount was analyzed. The results show that the hardness and strength of 304 austenitic stainless steel increase with the increase of tensile amount during static uniaxial stretching at room temperature,and the relationship between stress and strain satisfies the linear strengthening model. Mechanical properties are less sensitive to strain rate. In order to ensure the accuracy of the approximate mathematical model,the model was verified under different tensile amounts and strain rates. The numerical simulation results are in good agreement with the physical experiments.
引文
[1]薛河,庄泽城,曹婷,等.结构材料维氏硬度与屈服应力的关系分析[J].西安科技大学学报,2017,37(2):274-279.XUE He,ZHUANG Zecheng,CAO Ting,et al. Relationship between Vickers hardness and yield stress of structural materials[J].Journal of Xi'an University of Science and Technology,2017,37(2):274-279.
    [2]胡钢,许淳淳,张新生.奥氏体304不锈钢微观组织变化与冷加工的关系[J].黄冈师范学院学报,2002,22(3):17-19.HU Gang,XU Chunchun,ZHANG Xinsheng. The relationship between microstructure changes and cold working of austenite 304stainless steel[J]. Journal of Huanggang Normal University,2002,22(3):17-19.
    [3]刘浩.预应变下304奥氏体不锈钢晶间腐蚀敏感性研究[D].南京:南京工业大学,2016.LIU Hao. Study on intergranular corrosion sensitivity of 304 austenitic stainless steel under pre-strain[D]. Nanjing:Nanjing University of Technology,2016.
    [4]麻永林,李志峰,邢淑清,等.退火张力对冷轧SUS304不锈钢带力学性能和残余应力的影响[J].塑性工程学报,2014,21(5):116-120.MA Yonglin,LI Zhifeng,XING Shuqing,et al. Effect of annealing tension on mechanical properties and residual stress of cold rolled SUS304 stainless steel strips[J]. Journal of Plasticity Engineering,2014,21(5):116-120.
    [5]李红宇,韩军,邢健,等.变形速率对核电用304L管材力学性能和变形行为的影响[J].材料热处理学报,2018,39(1):66-70.LI Hongyu,HAN Jun,XING Jian,et al. Effect of deformation rate on mechanical properties and deformation behavior of 304L tubes used in nuclear power[J]. Journal of Materials Heat Treatment,2018,39(1):66-70.
    [6]郑宝锋,舒赣平,沈晓明.不锈钢材料常温力学性能实验研究[J].钢结构,2011,26(5):1-6.ZHENG Baofeng,SHU Ganping,SHEN Xiaoming. Experimental study on mechanical properties of stainless steel at room temperature[J]. Steel Structure,2011,26(5):1-6.
    [7]陈炜,张杨,丁毅,等.不锈钢超薄板力学性能的尺度效应[J].塑性工程学报,2014,21(6):71-74.CHEN Wei,ZHANG Yang,DING Yi,et al. Scale effect of mechanical properties of stainless steel ultra-thin plates[J]. Journal of Plasticity Engineering,2014,21(6):71-74.
    [8]叶丽燕,李细锋,陈军.不同拉伸速率对SUS304不锈钢室温拉伸力学性能的影响[J].塑性工程学报,2013,20(2):89-93.YE Liyan,LI Xifeng,CHEN Jun. Effect of different tensile rates on mechanical properties of SUS304 stainless steel at room temperature[J]. Journal of Plasticity Engineering,2013,20(2):89-93.
    [9] POST J,NOLLES H,DATTA K,et al. Experimental determination of the constitutive behavior of a metastable austenitic stainless steel[J]. Materials Science and Engineering A,2008,498:179-190.
    [10]卢沛.塑性变形对304不锈钢应力腐蚀性能影响的实验研究[D].杭州:浙江工业大学,2013.LU Pei. Experimental study on the effect of plastic deformation on the stress corrosion of 304 stainless steel[D]. Hangzhou:Zhejiang University of Technology,2013.
    [11]孙红婵,胡冰,李晨辉,等.基于冷加工的45钢塑性本构关系研究[J].制造业自动化,2015,37(13):146-147,152.SUN Hongchan,HU Bing,LI Chenhui,et al. Study on the plastic constitutive relation of 45 steel based on cold working[J]. Manufacturing Automation,2015,37(13):146-147,152.
    [12]吕阳阳,闫玉平,刘睿平,等.皮尔格冷轧过程钢管周期送进量优化模型的建立与验证[J].重型机械,2016,(3):92-96.LYangyang,YAN Yuping,LIU Ruiping,et al. Establishment and verification of the optimization model of steel pipe cycle feeding in Pilger cold rolling process[J]. Heavy Machinery,2016,(3):92-96.
    [13] GB/T 228. 1—2010,金属材料室温拉伸实验第1部分:室温实验方法[S].GB/T 228. 1—2010,Room temperature tensile test of metallic materials part 1:Room temperature test method[S].
    [14] GB/T 4340. 1—2012,金属材料维氏硬度试验第1部分:试验方法[S].GB/T 4340. 1—2012,Metallic materials-Vickers hardness testPart 1. Test method[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700