基于IMCT理论的轴承钢精炼渣系碱度模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calculation Model of Optimal Basicity for the Refining Slag of Bearing Steel Based on IMCT Theory
  • 作者:雷家柳 ; 李德胜 ; 朱航宇
  • 英文作者:Lei Jialiu;Li Desheng;Zhu Hangyu;School of Materials Science and Engineering,Hubei Polytechnic University Metallurgy Engineering Department;Daye Special Steel Corp.,Ltd.;Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,Wuhan University of Science and Technology;
  • 关键词:轴承钢 ; 精炼渣 ; 共存理论 ; 最适碱度 ; 计算模型
  • 英文关键词:bearing steel;;refining slag;;coexistence theory;;optimal basicity;;calculation model
  • 中文刊名:GTFT
  • 英文刊名:Iron Steel Vanadium Titanium
  • 机构:湖北理工学院材料科学与工程学院冶金工程系;大冶特殊钢股份有限公司;武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:钢铁钒钛
  • 年:2019
  • 期:v.40;No.176
  • 基金:国家自然科学基金资助项目(51704105,51604198);; 湖北省教育厅科学技术研究项目(Q20174504)
  • 语种:中文;
  • 页:GTFT201902027
  • 页数:5
  • CN:02
  • ISSN:51-1245/TF
  • 分类号:115-119
摘要
针对轴承钢精炼过程中全氧含量的控制问题,基于熔渣分子与离子共存理论(IMCT),建立了CaO-SiO_2-MgO-Al_2O_3-FeO精炼渣系在1 853 K时炉渣最适碱度的计算模型,并对该渣系最适碱度的影响因素进行了讨论分析。结果表明:①在不同的FeO含量时,N_(FeO)均在碱度为3左右时出现最大值,最适碱度基本不随FeO含量的变化而改变。②MgO含量对最适碱度有较大的影响。随着MgO含量的增加,最适碱度呈减小的趋势。③Al_2O_3含量对最适碱度的影响与MgO相反,随着Al_2O_3含量的增加,最适碱度明显增大。
        The fatigue life of bearing steel is closely related to the total oxygen content in the steel.Aimming at the control of T[O]in the bearing steel during refining process,a calculation model of optimal basicity for the refining slag CaO-SiO_2-MgO-Al_2O_3-FeO at 1 853 K is established,based on the ion and molecule coexistence theory(IMCT).And the influence factors on optimal basicity for the slag system are discussed and analyzed.The results show that:①For different FeO content,the maximum value of N_(FeO) occured when the basicity are all around 3,the optimal basicity basically does not change with the variation of FeO content.②The content of MgO has a great influence on the optimal basicity,with the increase of MgO content,the optimal basicity decreased.③The effect of Al_2O_3 content on the optimal basicity is opposite to that of MgO.With the increase of Al_2O_3 content,the optimal basicity increases significantly.
引文
[1] Zhong Shunsi,Wang Changsheng.Bearing steel[M].Beijing:Metallurgical Industry Press,2000.(钟顺思,王昌生.轴承钢[M].北京:冶金工业出版社,2000.)
    [2] Yang Zhongmin.Introduce of bearing steel quality and metallurgical test[J].Metal World,2011(1):40-45.(杨忠敏.谈轴承钢及其冶金质量检验[J].金属世界,2011(1):40-45.)
    [3] Uesugi T.Recent development of bearing steel in Japan[J].ISIJ International,2006,28(11):893-899.
    [4] Ma Wenjun,Bao Yanping,Wang Min,et al.Analysis and aesearch of the inclusions of GCr15 billets[J].Iron Steel Vanadium Titanium,2014,35(4):98-102.(马文俊,包燕平,王敏,等.轴承钢GCr15铸坯夹杂物的分析研究[J].钢铁钒钛,2014,35(4):98-102.)
    [5] Li Fengwei,Cheng Guoguang.Calculating model of refining slag components of GCr15 bearing steel[J].China Metallurgy,2015,25(8):18-22.(李风伟,成国光.GCr15轴承钢精炼渣成分预测模型[J].中国冶金,2015,25(8):18-22.)
    [6] Ge Jinpeng,Li Jing,Shi Chengbin,et al.Effect of high-basicity refining slag on cleanliness of bearing steel GCr15[J].Iron & Steel,2016,51(11):30-35.(葛金朋,李晶,史成斌,等.高碱度精炼渣对GCr15轴承钢洁净度的影响[J].钢铁,2016,51(11):30-35.)
    [7] Kishimoto T,Hasegawa M,Ohnuki K,et al.The activities of FexO in CaO-SiO2-Al2O3-MgO-FexO slags at 1 723 K[J].Steel Research International,2005,76(5):341-347.
    [8] Yang X M,Shi C B,Zhang M,et al.A thermodynamic model for prediction of iron oxide activity in some FeO-containing slag systems[J].Steel Research International,2012,83(3):244-258.
    [9] Basu S,Lahiri A K,Seetharaman S.Activity of iron oxide in steelmaking slag[J].Metallurgical & Materials Transactions B,2008,39(3):447-456.
    [10] Ottonello G.Thermodynamic constraints arising from the polymeric approach to silicate slags:the system CaO-FeO-SiO2 as an example[J].Journal of Non-Crystalline Solids,2001,282(1):72-85.
    [11] Zhang L,Sun S,Jahanshahi S.An approach to modeling Al2O3 containing slags with the cell model[J].Journal of Phase Equilibria & Diffusion,2007,28(1):121-129.
    [12] Modigell M,Traebert A,Monheim P,et al.A new tool for process modelling of metallurgical processes[J].Computers & Chemical Engineering,2001,25(4):723-727.
    [13] Chen C,Jhahnshahi S.Thermodynamics of arsenic in FeOx-CaO-SiO2 slags[J].Metall Mater Trans B,2010,41(6):1166-1174.
    [14] Kang Y B,Pelton A D.Thermodynamic model and database for suldes dissolved in molten oxide slags[J].Metall Mater Trans B,2009,40(6):979-994.
    [15] Kondratiev A,Jak E.A quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-FeO-SiO2 system[J].Metall Mater Trans B,2005,36(5):623-638.
    [16] Li Pengcheng,Li Jinyan,Zhang Meng,et al.Expression of oxidation ability for metallurgical slags based on the ion and molecule coexistence theory[J].Journal of University of Science & Technology Beijing,2013,35(12):1569-1579.(李鹏程,李晋岩,张盟,等.基于离子和分子共存理论的炉渣氧化能力表征[J].北京科技大学学报,2013,35(12):1569-1579.)
    [17] Zhang Jian,Wang Chao.Calculation model of oxidizing capability for multicomponent slag systems[J].Journal of Iron and Steel Research,1992,4(2):23-31.(张鉴,王潮.多元熔渣氧化能力的计算模型[J].钢铁研究学报,1992,4(2):23-31.)
    [18] Niu Haiyun,Lei Yong.Produce test of ultra-low oxygen content steel[J].Gansu Metallurgy,2008,30(5):7-9.(牛海云,雷勇.超低氧含量钢的生产实践[J].甘肃冶金,2008,30(5):7-9.)
    [19] Chuiko N M.On the structural theory of metallurgical slags[J].Ferrous Met,1959(5):3-10.
    [20] Zhang Jian.Calculation thermodynamics of metallurgical melt and solution[M].Beijing:Metallurgical Industry Press,2007.(张鉴.冶金熔体和溶液的计算热力学[M].北京:冶金工业出版社,2007.)
    [21] Yu Ping,Chen Weiqing,Feng Jun,et al.Effect of high basicity slag refining on inclusion in bearing steel[J].Special Steel,2004,25(4):41-43.(于平,陈伟庆,冯军,等.高碱度渣精炼对轴承钢夹杂物的影响[J].特殊钢,2004,25(4):41-43.)
    [22] Ge Jinpeng,Li Jing,Shi Chengbin,et al.Effect of high-basicity refining slag on cleanliness of bearing steel GCr15[J].Iron & Steel,2016,51(11):30-35.(葛金朋,李晶,史成斌,等.高碱度精炼渣对GCr15轴承钢洁净度的影响[J].钢铁,2016,51(11):30-35.)
    [23] Yang Hulin,He Ping,Zhai Yuchun.Progress on control of ultra-low-oxygen content and non-metallic inclusions in high quality bearing steel[J].Special Steel,2013,34(2):16-19.(杨虎林,何平,翟玉春.高品质轴承钢超低氧含量和非金属夹杂物控制的进展[J].特殊钢,2013,34(2):16-19.)
    [24] Huang Yongsheng,Sun Guangtao,Gu Chao,et al.Technical practice and research on optimal composition of refining slag of aluminium deoxidation bearing steel GCr15[J].China Metallurgy,2017,27(12):44-48.(黄永生,孙光涛,顾超,等.铝脱氧轴承钢GCr15精炼渣最优成分的分析与实践[J].中国冶金,2017,27(12):44-48.)
    [25] Zhang Mingbo,Li Junguo,Ma Hongqiang.Effect of ingredient on viscosity of CaO-MgO-SiO2-Al2O3 quaternary refining slag series[J].Special Steel,2013,34(2):28-31.(张明博,李俊国,马红强.组分含量对CaO-MgO-SiO2-Al2O3四元精炼渣系黏度的影响[J].特殊钢,2013,34(2):28-31.)
    [26] Yoon B H,Heo K H,Kim J S,et al.Improvement of steel cleanliness by controlling slag composition[J].Ironmaking & Steelmaking,2002,29(3):214-217.
    [27] Ma Wenjun,Bao Yanping,Wang Min,et al.Key technologies of smelting in high cleanliness bearing steel with EAF[J].Steelmaking,2014,30(3):42-45.(马文俊,包燕平,王敏,等.高洁净度轴承钢冶炼关键技术的研究[J].炼钢,2014,30(3):42-45.)
    [28] Shen Wanlin,Zhang Zhicheng,Luo Xiaoyan.A study on behavior of oxide inclusions in bearing steel GCr15 at refining end of a 60 t LF[J].Special Steel,2018,39(1):18-23.(沈万林,张志成,罗小燕.60 t LF精炼终点GCr15轴承钢中氧化物夹杂特性的研究[J].特殊钢,2018,39(1):18-23.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700