模拟酸雨高温胁迫对桂花品种‘杭州黄’抗氧化酶活性和非结构性碳代谢的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of simulated acid rain and heat stress on antioxidant enzyme activities and non-structural carbon metabolism of Osmanthus fragrans 'Hangzhou Huang'
  • 作者:王小东 ; 汪俊宇 ; 周欢欢 ; 傅卢成 ; 王彬 ; 张汝 ; 高岩
  • 英文作者:WANG Xiaodong;WANG Junyu;ZHOU Huanhuan;FU Lucheng;WANG Bin;ZHANG Rumin;GAO Yan;School of Forestry and Biotechnology, Zhejiang A&F University;
  • 关键词:植物生理学 ; 桂花 ; 酸雨高温胁迫 ; 抗氧化防御系统 ; 非结构性碳
  • 英文关键词:plant physiology;;Osmanthus fragrans;;acid rain and heat stresses;;antioxidant defense system;;non-structural carbon
  • 中文刊名:ZJLX
  • 英文刊名:Journal of Zhejiang A & F University
  • 机构:浙江农林大学林业与生物技术学院;
  • 出版日期:2019-01-24
  • 出版单位:浙江农林大学学报
  • 年:2019
  • 期:v.36;No.158
  • 基金:国家自然科学基金资助项目(31270756,31470704)
  • 语种:中文;
  • 页:ZJLX201901009
  • 页数:8
  • CN:01
  • ISSN:33-1370/S
  • 分类号:57-64
摘要
为了揭示桂花品种‘杭州黄’ Osmanthus fragrans ‘Hangzhou Huang’抵御酸雨高温胁迫的生理生化机制,以‘杭州黄’叶片为材料,采用盆栽人工模拟酸雨胁迫(pH 5.6, pH 4.0, pH 3.0, pH 2.0)和高温胁迫(40℃)进行处理,测定了叶片光合色素,活性氧(ROS),丙二醛(MDA)质量摩尔浓度,抗氧化酶活性和非结构性碳的变化。结果表明:(1)酸雨或高温单一胁迫后,叶绿素a(Chl a)质量分数、总叶绿素(Chl t)质量分数和Chl a/b均呈降低趋势。酸雨高温协同胁迫后,叶绿素a和总叶绿素质量分数及Chl a/b进一步降低, pH 2.0处理分别比对照降低了27.7%,23.8%和19.5%(P<0.05)。(2)ROS和MDA质量摩尔浓度在酸雨或高温胁迫后均显著增加;协同胁迫后,随着pH值的降低, O_2·-和MDA质量摩尔浓度显著增加, pH 2.0处理分别比对照增加了158.3%和142.0%(P<0.05),过氧化氢(H_2O_2)质量摩尔浓度在pH 3.0时达最大,比对照增加了180.0%(P<0.05)。(3)酸雨及高温胁迫后保护酶超氧化物歧化酶(SOD),过氧化物酶(POD)和过氧化氢酶(CAT)活性均显著增加, 3种酶共同作用抵御胁迫造成的伤害;协同胁迫后, SOD和CAT活性先升高后下降,而POD仍保持较高活性, pH 2.0处理比对照增加了107.3%(P<0.05)。(4)酸雨胁迫后,葡萄糖和果糖质量分数相对稳定,蔗糖和淀粉质量分数显著降低;高温胁迫后,非结构性碳质量分数均显著降低;协同胁迫后,非结构性碳质量分数进一步降低,其中协同pH 2.0胁迫后果糖、蔗糖和淀粉质量分数分别比对照降低了38.1%~41.6%,葡萄糖质量分数比对照降低了22.4%。研究表明:‘杭州黄’在酸雨高温胁迫后通过调节保护酶活性和非结构性碳代谢减轻胁迫造成的伤害,增强机体还原力,表现出较强的抵御酸雨高温胁迫的能力。
        To reveal the physiological and biochemical mechanisms of Osmanthus fragrans, regarding the resistance to acid rain and heat stress, this study used the leaves of O. fragrans(cultivar ‘Hangzhou Huang') as the material. Plants grown in pots treated with simulated acid rain stress [p H 5.6(ck), 4.0, 3.0, and 2.0] and heat stress(40 ℃) treatments were analyzed. Photosynthetic pigment content, active oxygen(ROS), malondialdehyde(MDA) content, antioxidant enzyme activity, and non-structural carbon changes in composition and content were measured. Results showed that(1) generally, the contents of chlorophyll a(Chl a), total chlorophyll(Chl t), and the ratio of Chl a/b ratio decreased after acid rain and heat as individual stresses. After the co-stresses of acid rain and heat, there is significant decreases(P<0.05) of Chl a(27.7%), Chl t(23.8%),and the Chl a/b(19.5%) compared to the control of pH 2.0.(2) ROS and MDA increased significantly(P<0.05) after acid rain or heat as individual stress. After co-stresses, the content of O_2·-and MDA increased significantly(P<0.05) as pH decreased, and increased 158.3%(O_2·-) and 142.0%(MDA) compared to the control of pH 2.0. The content of H_2O_2 significantly increased(P<0.05) and reached a maximum of 180.0%compared to the control of pH 3.0.(3) Superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT)activities increased significantly(P<0.05) with individual acid rain or heat stresses, and the three enzymes cooperated to resist stress damage. After co-stresses, the SOD and CAT activities firstly increased and then decreased; whereas, POD still maintained a high activity and increased 107.3% compared to the control of pH_2.0.(4) After acid rain stress, the contents of glucose and fructose were relatively stable, but sucrose and starch decreased significantly(P <0.05). Non-structural carbon contents decreased significantly after heat stress(P<0.05). After co-stresses, non-structural carbon content decreased even further: among them, fructose, sucrose, and starch content decreased 38.1%-41.6%(P <0.05); and glucose content decreased 22.4%compared to the control of pH 2.0(P<0.05). The results indicate that O. fragrans ‘Hangzhou Huang' could reduce the damages of acid rain and heat stresses by regulating activities of protective enzymes and non-structural carbon metabolism.
引文
[1] ADAMS W W, DEMMIG-ADAMS B. Chlorophyll fluorescence as a tool to monitor plant response to the environment[C]//PAPAGEORGIOU G C, GOVINDJEE. Chlorophyll a Fluorescence:A Signature of Photosynthesis. Dordrecht Netherlands:Springer, 2004:583-604.
    [2] CARTER G A, KNAPP A K. Leaf optical properties in higher plants:linking spectral characteristics to stress and chlorophyll concentration[J]. Am J Bot, 2001, 88(4):677-684.
    [3] WEN Kejia, LIANG Chanjuan, WANG Lihong, et al. Combined effects of lanthanumion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings[J]. Chemosphere, 2011, 84(5):601-608.
    [4] LIANG Chanjuan, GE Yuqing, SU Lei, et al. Response of plasma membrane H+-ATPase in rice(Oryza sativa)seedlings to simulated acid rain[J]. Environ Sci Pollut Res, 2015, 22(1):535-545.
    [5] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12):909-930.
    [6] AHMAD P, JALEEL C A, SALEM M A, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress[J]. Crit Rev Biotechnol, 2010, 30(3):161-175.
    [7] BEZERRIL FONTENELE N M, OTOCH M D L O, GOMES-ROCHETTE N F, et al. Effect of lead on physiological and antioxidant responses in two Vigna unguiculata cultivars differing in Pb-accumulation[J]. Chemosphere, 2017,176:397-404.
    [8] GAJEWSKA E, SKODOWSKA M. Differential biochemical responses of wheat shoots and roots to nickel stress:antioxidative reactions and proline accumulation[J]. Plant Growth Regul, 2008, 54(2):179-188.
    [9] JU Shuming, YIN Ningning, WANG Liping, et al. Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress[J]. PLoS One, 2017, 12(3):e0173378. doi:10.1371/journal.pone.0173378.
    [10] OHTO M, ONAI K, FURUKAWA Y, et al. Effects of sugar on vegetative development and floral transition in Arabidopsis[J]. Plant Physiol, 2001, 127(1):252-261.
    [11]李天红,李绍华.水分胁迫对苹果苗非结构性碳水化合物组分及含量的影响[J].中国农学通报, 2002, 18(4):35-39.LI Tianhong, LI Shaohua. Effects of water deficiency stresses on components and contents of the non-structured carbohydrates in the tissue-cultured apple seedlings[J]. Chin Agric Sci Bull, 2002, 18(4):35-39.
    [12] BOLOURI-MOGHADDAM M R, ROY K L, XIANG L, et al. Sugar signalling and antioxidant network connections in plant cells[J]. Febs J, 2010, 277(9):2022-2037.
    [13]张新民,柴发合,王淑兰,等.中国酸雨研究现状[J].环境科学研究, 2010, 23(5):527-532.ZHANG Xinmin, CHAI Fahe, WANG Shulan, et al. Research progress of acid precipitation in China[J]. Res Environ Sci, 2010, 23(5):527-532.
    [14] YOU Shijun. Improvement of China’s Air Pollution(Sulphur Dioxide and Acid Rain)Control and Countermeasures by Introducing Emissions Trading System[D]. Vancouver:The University of British Columbia, 2010.
    [15] ARNON D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris[J]. Plant Physiol, 1949,24(1):1-15.
    [16] LICHTENTHALER H K. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes[J]. Methods Enzymol, 1987, 148(1):350-382.
    [17]李忠光,龚明.植物中超氧阴离子自由基测定方法的改进[J].云南植物研究, 2005, 27(2):211-216.LI Zhongguang, GONG Ming. Improvement of measurement method for superoxide anion radical in plant[J]. Acta Bot Yunnan, 2005, 27(2):211-216.
    [18] CHANDRA R A, SINGH M, SHAH K. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants[J]. Plant Physiol Biochem,2012, 61(4):108-114.
    [19] HODGES D M, DELONG J M, FORNEY C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta,1999, 207(4):604-611.
    [20] KUMARI G J, REDDY A M, NAIK S T, et al. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings[J]. Biol Plant, 2006, 50(2):219-226.
    [21] FUNK J L, CORNWELL W K. Leaf traits within communities:context may affect the mapping of traits to function[J]. Ecology, 2013, 94(9):1893-1897.
    [22]尹华军.增温对川西亚高山针叶林不同光环境下几种幼苗生长的影响[D].成都:中国科学院研究生院,2007.YIN Huajun. Effects of Experimental Warming on Growth of Several Species Seedlings under Two Contrasting Light Conditions in Subalpine Coniferous Forest of Western Sichuan, China[D]. Chengdu:Graduate School of Chinese Academy of Sciences, 2007.
    [23] FU Jinmin, HUANG Bingru. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress[J]. Environ Exp Bot, 2001, 45(2):105-114.
    [24]王玉魁,郭慧媛,阎艳霞,等.酸雨胁迫对毛竹叶片光合速率和叶绿素荧光参数的影响[J].生态环境学报,2015, 24(9):1425-1433.WANG Yukui, GUO Huiyuan, YAN Yanxia, et al. Effect of acid rain stress on photosynthetic rate and chlorophyll fluorescence parameters in leaves of Phyllostachys pubescens[J]. Ecol Environ Sci, 2015, 24(9):1425-1433.
    [25]邱栋梁,刘星辉.模拟酸雨对龙眼叶绿体活性的影响[J].应用生态学报, 2002, 13(12):1559-1562.QIU Dongliang, LIU Xinghui. Effects of simulated acid rain on chloroplast activity in Dimorcarpus longana Lour.cv.Wulongling leaves[J]. Chin J Appl Ecol, 2002, 13(12):1559-1562.
    [26] OKTYABRSKY O N, SMIRNOVA G V. Redox regulation of cellular functions[J]. Biochem Biokhim, 2007, 72(2):132-145.
    [27]贾丽,刘盟盟,张洪芹,等.冷蒿抗氧化防御系统对机械损伤的响应[J].浙江农林大学学报, 2016, 33(3):462-470.JIA Li, LIU Mengmeng, ZHANG Hongqin, et al. Antioxidant defense system responses of Artemisia frigida to mechanical damage[J]. J Zhejiang A&F Univ, 2016, 33(3):462-470.
    [28] LIU E U, LIU C P. Effects of simulated acid rain on the antioxidative system in Cinnamomum philippinense seedlings[J]. Water Air Soil Pollut, 2011, 215(1/4):127-135.
    [29]吴永波,叶波.高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J].生态学报, 2016, 36(2):403-410.WU Yongbo, YE Bo. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecol Sin, 2016, 36(2):403-410.
    [30]赵栋,潘远智,邓仕槐,等.模拟酸雨对茶梅生理生态特性的影响[J].中国农业科学, 2010, 43(15):3191-3198.ZHAO Dong, PAN Yuanzhi, DENG Shihuai, et al. Effects of simulated acid rain on physiological and ecological characteristics of Camellia sasanqua[J]. Sci Agric Sin, 2010, 43(15):3191-3198.
    [31]牛远,梁建萍,张建达,等.高温胁迫对华北落叶松幼苗抗氧化酶的影响[J].山西农业科学, 2008, 36(10):47-49.NIU Yuan, LIANG Jianping, ZHANG Jianda, et al. Antioxidant enzymes response of Larix principis-rupprechtii seedlings under high temperature stress[J]. J Shanxi Agric Sci, 2008, 36(10):47-49.
    [32] FOYER C H, NOCTOR G. Photosynthetic Nitrogen Assimilation:Inter-Pathway Control and Signaling[M]. Dordrecht Netherlands:Springer, 2002.
    [33] COU魪E I, SULMON C, GOUESBET G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. J Exp Bot, 2006, 57(3):449-459.
    [34] RUAN Yongling. Signaling role of sucrose metabolism in development[J]. Mol Plant, 2012, 5(4):763-765.
    [35]童贯和,梁惠玲.模拟酸雨及其酸化土壤对小麦幼苗体内可溶性糖和含氮量的影响[J].应用生态学报,2005, 16(8):1487-1492.TONG Guanhe, LIANG Huiling. Effects of simulated acid rain and its acidified soil on soluble sugar and nitrogen contents of wheat seedlings[J]. Chin J Appl Ecol, 2005, 16(8):1487-1492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700