机械损伤日本结缕草转录组中相关转录因子的初步分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Related Transcriptional Factors in the Transcriptome of Mechanically-damaged Zoysia japonica
  • 作者:赵方东 ; 曾会明
  • 英文作者:ZHAO Fang-dong;ZENG Hui-ming;Turfgrass Management Department,Beijing Forestry University;
  • 关键词:日本结缕草 ; 转录因子 ; 机械损伤
  • 英文关键词:Zoysia japonica;;transcription factor;;mechanical damage
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:北京林业大学草坪研究所;
  • 出版日期:2019-03-07 13:53
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.321
  • 语种:中文;
  • 页:SWJT201904002
  • 页数:6
  • CN:04
  • ISSN:11-2396/Q
  • 分类号:13-18
摘要
旨为获取机械损伤引起的AP2/EREBP、NAC以及WRKY转录因子相关的差异基因。通过将转录组测序后组装的序列转化为Mapman可识别的探针ID,对这三类转录因子进行筛选分析,加上转录组中Swiss-Prot和Nr数据库的注释。获得AP2/EREBP类转录因子差异基因13个,NAC类差异基因8个,WRKY类差异基因11个,在T8和T9时刻时,AP2/EREBP类、NAC类和WRKY类分别出现一个与对照(T7)相比明显下调的差异基因,而在NAC这一类转录因子中,与对照相比,有2个差异基因先下调,再上调,其余三类转录因子的差异基因均处于上调状态。通过数据库注释表明日本结缕草在遭受机械损伤时AP2/EREBP和WRKY类转录因子能够增强对非生物胁迫和生物胁迫的应答能力,增强抗逆性,并且NAC类转录因子传递信号至茎端分生组织并调控其生长。
        This work aims to obtain differential genes(DEGs)related to AP2/EREBP,NAC,and WRKY transcription factors caused by mechanical damage. These three transcription factors were screened by converting the assembled sequences after transcriptome sequencing into Mapman-recognizable probe IDs,and were annotated from the Swiss-Prot and Nr databases in the transcriptome. Total 13 DEGs of AP2/EREBPs,8 DEGs of NACs and 11 DEGs of WRKYs were obtained. In contrast to control T7(Mechanically damaged 0 h),one DEG was down-regulated in AP2/EREBPs,NACs,and WRKYs at T8(Mechanically damaged 2 h)and T9(Mechanically damaged6 h),respectively;whereas two DEGs of NAC showed up-regulated trend at T8 and down-regulated trend at T9,and the DEGs of other transcriptional factors were all up-regulated at T8 and T9. The database annotation indicated that AP2/EREBP and WRKY transcription factors enhanced the response to abiotic stress and biotic stress,i.e.,enhanced its stress resistance,when Zoysia japonica was damaged mechanically. Moreover,the NAC transcription factor transmitted signals to shoot apical meristem and regulated its growth.
引文
[1]Eulgem T,Rushton PJ,Robatzek S,et al.The WRKY superfamily of plant transcription factors[J].Trends in Plant Science,2000,5(5):199-206.
    [2]Cristobal U,Assaf D,Tzion F,et al.A NAC Gene regulating senescence improves grain protein,zinc,and iron content in wheat[J].Science,2006,314(5803):1298-1301.
    [3]Gutterson N,Reuber TL.Regulation of disease resistance pathways by AP2/ERF transcription factors[J].Curr Opin Plant Biol,2004,7(4):465-471.
    [4]Chen JQ,Meng XP,Yun Z,et al.Over-expression of OsDREB genes lead to enhanced drought tolerance in rice[J].Biotechnol Lett,2008,30(12):2191-2198.
    [5]Guo Y,Gan S.AtNAP,a NAC family transcription factor,has an important role in leaf senescence[J].Plant J,2006,46(4):601-612.
    [6]Lee MH,Jeon HS,Kim HG,et al.An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164[J].New Phytol,2017,214(1):343-360.
    [7]Xu Z,Gongbuzhaxi,Wang C,et al.Wheat NAC transcription factor TaNAC29 is involved in response to salt stress[J].Plant Physiol Biochem,2015,96(2015):356-363.
    [8]Liu F,Li X,Wang M,et al.Interactions of WRKY15 and WRKY33transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection[J].Plant Biotechnol J,2018,16(4):911-925.
    [9]Guo P,Li Z,Huang P,et al.A tripartite amplification loop involving the transcription factor WRKY75,salicylic acid,and reactive oxygen species accelerates leaf senescence[J].Plant Cell,2017,29(11):2854-2870.
    [10]Choi C,Hwang SH,Fang IR,et al.Molecular characterization of Oryza sativa WRKY6,which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related(PR)10a promoter and confers reduced susceptibility to pathogens[J].New Phytol,2015,208(3):846-859.
    [11]Ding ZJ,Yan JY,Xu XY,et al.Transcription factor WRKY46regulates osmotic stress responses and stomatal movement independently in Arabidopsis[J].Plant J,2014,79(1):13-27.
    [12]Li L,He X,Zhao F,et al.WUS and PIN1-related genes undergo dynamic expressional change during organ regeneration in response to wounding in Zoysia japonica[J].Mol Biol Rep,2018,45(6):1733-1744.
    [13]Jiading Y,Eric W,Michael U.A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves[J].Plant Cell,2014,26(12):4862-4874.
    [14]Kewei Z,Susheng G.An abscisic acid-AtNAP transcription factorSAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves[J].Plant Physiol,2012,158(2):961-969.
    [15]Araujo NCP,Afonso R,Bringela A,et al.Peroxides with antiplasmodial activity inhibit proliferation of Perkinsus olseni,the causative agent of Perkinsosis in bivalves[J].Parasitol Int,2013,62(6):575-582.
    [16]郭运娜.MdNAC29基因在苹果干旱和盐胁迫中的作用和机制[D].沈阳:沈阳农业大学,2018.
    [17]An JP,Li R,Qu FJ,et al.An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway[J].J Plant Physiol,2018,221(2018):74-80.
    [18]Wu A,Allu AD,Garapati P,et al.JUNGBRUNNEN1,a reactive oxygen species-responsive NAC transcription factor,regulates longevity in Arabidopsis[J].Plant Cell,2012,24(2):482-506.
    [19]Xie Q,Frugis G,Colgan D,et al.Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J].Genes Dev,2000,14(13):3024-3036.
    [20]Jin F,Hu L,Yuan D,et al.Comparative transcriptome analysis between somatic embryos(SEs)and zygotic embryos in cotton:evidence for stress response functions in SE development[J].Plant Biotechnol J,2014,12(2):161-173.
    [21]Yi D,Alvim Kamei CL,Cools T,et al.The Arabidopsis SIAMESE-RELATED cyclin-dependent kinase inhibitors SMR5 and SMR7regulate the DNA damage checkpoint in response to reactive oxygen species[J].Plant Cell,2014,26(1):296-309.
    [22]Silke R,Somssich IE.Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J].Genes Dev,2002,16(9):1139-1149.
    [23]Rosenvasser S,Mayak S,Friedman H.Increase in reactive oxygen species(ROS)and in senescence-associated gene transcript(SAG)levels during dark-induced senescence of Pelargonium cuttings,and the effect of gibberellic acid[J].Plant Sci,2006,170(4):873-879.
    [24]Skibbe M,Qu N,Galis I,et al.Induced plant defenses in the natural environment:Nicotiana attenuata WRKY3 and WRKY6coordinate responses to herbivory[J].Plant Cell,2008,20(7):1984-2000.
    [25]Birkenbihl RP,Diezel C,Somssich IE.Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J].Plant Physiol,2012,159(1):266-285.
    [26]Tsuneaki A,Guillaume T,Joulia P,et al.MAP kinase signalling cascade in Arabidopsis innate immunity[J].Nat,2002,415(6875):977-983.
    [27]Hu Y,Dong Q,Yu D.Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae[J].Plant Science,2012,185-186(2012):288-297.
    [28]Moreau M,Degrave A,Vedel R,et al.EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora[J].Molecular Plant-Microbe Interactions,2012,25(3):421-430.
    [29]Encinas-Villarejo S,Maldonado AM,Amil-Ruiz F,et al.Evidence for a positive regulatory role of strawberry(Fragariaxananassa)Fa WRKY1 and Arabidopsis AtWRKY75 proteins in resistance[J].J Exp Bot,2009,60(11):3043-3065.
    [30]Xu X,Chen C,Fan B,et al.Physical and functional interactions between pathogen-induced Arabidopsis WRKY18,WRKY40,and WRKY60 transcription factors[J].Plant Cell,2006,18(5):1310-1326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700