往复振动碳化硅工件/铸铁抛光盘接触温度仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contact Temperature Simulation of Reciprocating Vibrating Silicon Carbide Workpiece/Cast Iron Polishing Disc
  • 作者:翟文杰 ; 郝建树
  • 英文作者:ZHAI Wen-jie;HAO Jian-shu;School of Mechatronics Engineering,Harbin Institute of Technology;College of Engineering,China Agricultural University;
  • 关键词:磨削热 ; 瞬态温度 ; 摩擦副 ; 抛光 ; 仿真分析
  • 英文关键词:grinding heat;;transient temperature;;frictional pairs;;polishing;;simulation analysis
  • 中文刊名:HLGX
  • 英文刊名:Journal of Harbin University of Science and Technology
  • 机构:哈尔滨工业大学机电工程学院;中国农业大学工学院;
  • 出版日期:2019-06-17 08:59
  • 出版单位:哈尔滨理工大学学报
  • 年:2019
  • 期:v.24
  • 基金:国家自然科学基金(51475119)
  • 语种:中文;
  • 页:HLGX201903008
  • 页数:6
  • CN:03
  • ISSN:23-1404/N
  • 分类号:51-56
摘要
水平往复振动辅助抛光可提高材料去除效率。为了揭示振动辅助抛光对研抛效率的摩擦温度效应,依据传热学的相关理论,采用Comsol软件对往复振动条件下的碳化硅工件与铸铁抛光盘摩擦副的界面温度分布进行瞬态仿真分析。结合参数化扫描的方法,研究了不同工况条件,如水平振动频率、振幅、正压力等因素,对试件表面参考点和参考线温度的影响规律,以期获得最佳的振动辅助研抛工况条件。仿真分析结果表明:在水平往复振动抛光过程中,碳化硅工件的最高温度随着振动频率的增加呈现先升高再降低、而后继续升高的趋势;工件的最高温度随着振幅和载荷的增加呈现线性升高的趋势。
        The horizontal reciprocating/vibrating-assisted polishing can improve the efficiency of materials removal rate( MRR). In order to evaluate its thermal effect in this polishing process,the interface temperature distribution of the workpiece/polishing plate under reciprocating vibration condition was simulated by the Comsol software based on the heat transmission theory. Using the parameter scanning method,the distribution and variation of the Si C wafer surface temperature at middle point and the reference radius line was simulated and studied under different working conditions,e. g.,translational vibrating frequency,amplitude,applied pressure,to obtain the best polishing condition. Simulation results show that in the horizontal reciprocating vibration assisted polishing process,with the increase of vibration frequency,the maximum temperature of Si C specimen increases first,then decreases,and finally continues to rise. The maximum temperature of Si C specimen increases linearly with the increase of vibration amplitude and applied load.
引文
[1]LEFEBVRE A,LIPINSKI P,VIEVILLE P.Experimental Analysis of Temperature in Grinding at the Global and Local Scales[J].Machine Science and Technology,2008,12:1.
    [2]GONZALEZ-SANTANDER J L.Analytic Solution for Maximum Temperature during Cut in and Cut out in Surface Grinding[J].Applied Mathematical Modelling,2016,40:2356.
    [3]LEFEBVRE A,VIEVILLE P,LIPINSKI P.Numerical Analysis of Grinding Temperature Measurement by the foil/workpiece Thermocouple Method[J].International Journal of Machine Tools and Manufacture,2006,46:1716.
    [4]LEFEBVRE A,LANZETTA F,LIPINSKI P.Measurement of Grinding Temperatures using a Foil/Workpiece Thermocouple[J].International Journal of Machine Tools and Manufacture,2012,58:1.
    [5]ZHANG X,ZHU X,CHENG L.The Influence of Ultrasonic Honing Parameters to Workpiece Surface Temperature[C].MATECWeb of Conferences,2016,45:04008-p1-p6.
    [6]BLOK H.Theoretical Study of Temperature Rise at Surface of Actual Contact Under Oiliness Conditions[J].Proceedings of the Institution of Mechanical Engineers,1937,2:222.
    [7]JAEGER J C.Moving Sources of Heat and the Temperature of Sliding Contacts[J].Proceedings of Royal Society of New South Wales,1942,76:203.
    [8]GECIM B,WINTER W O.Transient Temperature in the Vicinity of an Asperity Contact[J].ASME Journal of Tribology,1985,107(3):333.
    [9]GREENWOOD J A,ALLISTON-GREINER A F.Surface Temperature in a Fretting Contact[J].Wear,1992,155(2):269.
    [10]QIU L,CHENG H S.Temperature Rise Simulation of Three-Dimensional Rough Surfaces in Mixed Lubricated Contact[J].ASMEJournal of Tribology,1998,120(2):310.
    [11]GAO J,LEE S,AI X,et al.An FFT-Based Transient Temperature Model for General Three-Dimensional Rough Surface Contacts[J].ASME Journal of Tribology,1999,122(3):519.
    [12]MANSOURI M,KHONSARI M M.Surface Temperature in Oscillating Sliding Interfaces[C]//Tribology Division.ASME/STLE2004 International Joint Tribology Conference.Long Beach,California,USA:ASME,2004:1397.
    [13]WEN J,KHONSARI M M.On the Temperature Rise of Bodies Subjected to Unidirectional or Oscillating Frictional Heating and Surface Convective Cooling[J].Tribology Transactions,2009,52(3):310.
    [14]WEN J,KHONSARI M M.Transient Temperature Involving Oscillatory Heat Source with Application in Fretting Contact[J].Tribology Transactions,2009,52(3):310.
    [15]WU Y,JIN H,LI Y.Simulation of Temperature Distribution in Disc Brake Considering a Real Brake pad Wear[J].Trbology Letters,2014,56(2):205.
    [16]ADAMOWICZ A,GRZES P.Analysis of Disc Brake Temperature Distribution during Single Braking Non-axisymmetric Load[J].Applied Thermal Engineering,2011,31:1003.
    [17]王国顺.列车盘式制动器温度场与振动模态的分析研究[D].大连:大连交通大学,2011.
    [18]KENNEDY F E,TIAN X.Modelling Sliding Contact Temperatures,Including Effects of Surface Roughness and Convection[J].ASME Journal of Tribology,2016,138(4):042101-1-042101-9.
    [19]ABDULLAH Oday I,SCHLATTMANN J.Temperature Analysis of a Pin-on-disc Tribology Test Using Experimental and Numerical Approaches[J].Friction,2016,4(2):135.
    [20]LING F F,LAI W M,Lucca D A.Fundamentals of Surface Mechanics with Applications[M].Springer-Verlag,New York:2002:69-75042101-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700