双矢量推力旋翼机建模与操纵特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling and Maneuvering Characteristic Analysis on Gyroplane with Dual-vector Thrust
  • 作者:韩俊林 ; 孙瑜
  • 英文作者:HAN Junlin;SUN Yu;The 28th Research Institute of China Electronics Technology Group Corporation;
  • 关键词:旋翼机 ; 矢量推力 ; 无人机 ; 数学建模 ; 指挥控制
  • 英文关键词:gyroplane;;dual-vector thrust;;unmanned aerial vehicle;;mathematical modeling;;command and control
  • 中文刊名:ZHXT
  • 英文刊名:Command Information System and Technology
  • 机构:中国电子科技集团公司第二十八研究所;
  • 出版日期:2019-07-22 07:56
  • 出版单位:指挥信息系统与技术
  • 年:2019
  • 期:v.10;No.57
  • 基金:江苏省研究生培养创新工程(SJLX16_0100)资助项目
  • 语种:中文;
  • 页:ZHXT201903015
  • 页数:7
  • CN:03
  • ISSN:32-1818/TP
  • 分类号:87-92+104
摘要
随着部队的急难险重任务的日益增多,任务载荷功能与质量逐渐增长,导致事发地应急通信组网难以有效展开。常规自转旋翼机的巡航速度低且机动性差,在军用和民用领域均受到限制,故无法满足急难险重任务下的指挥控制无人机通信组网要求。为了解决上述问题,采用了具备结构简单、机动性强、巡航速度快及超短距离起飞等特性的双矢量推进旋翼机。为了对该旋翼机进行有效控制并提高其飞行性能,分析了该旋翼机的特点,建立了该旋翼机的操纵特性非线性数学模型,并从工程应用出发,通过吹风试验获取了机体模型参数拟合曲线。最后,通过数字仿真分析了机体操纵响应特性,验证了该数学模型的正确性与真实性。
        With the increase of urgent, difficult, dangerous and heavy tasks of troops, the function and quality of mission load are increasing gradually, which leads to the difficulty of effective deployment to emergency communication network in the accident site. Due to the low cruise speed and poor maneuverability of the conventional gyroplane, it is restricted in both military and civilian fields, so it cannot meet the requirements of command and control communication networking with the unmanned aerial vehicle under the urgent, difficult, dangerous and heavy tasks. To solve the above problems, the dual-vector thrust gyroplane with the characteristics of simple structure, strong maneuverability, fast cruise speed and ultra-short takeoff is adopted. In order to effectively control the gyroplane and improve its flight performance, the gyroplane characteristics are analyzed, a nonlinear mathematical model of the gyroplane maneuvering characteristic is set up. From the view of engineering application, the fitting curve of body model parameters is obtained through the blow test. Finally, the response characteristics of body control are analyzed by the digital simulation, and the correctness and authenticity of this mathematical model are verified.
引文
[1] LEISHMAN J G.Development of the autogiro:a technical perspective[J].Journal of Aircraft,2004,41(4):765-781.
    [2] 戴大伟,龙海英.无人机发展与应用[J].指挥信息系统与技术,2013,4(4):7-10.
    [3] 孙瑜,王道波.一种新型无人自转旋翼机[J].兵器装备工程学报,2017,38(7):82-84.
    [4] 高浩,朱培申,高正红.高等飞行动力学[M].北京:国防工业出版社,2004.
    [5] 朱清华.自转旋翼飞行器总体设计关键技术研究[D].南京:南京航空航天大学,2007.
    [6] 陈淼.自转式无人旋翼机飞行控制技术研究[D].南京:南京航空航天大学,2011.
    [7] 马振强,董文瀚,解武杰,等.具有全向推力矢量的六旋翼无人机设计与建模[J].飞行力学,2016,34(2):32-36.
    [8] CHEN R T N.A survey of non-uniform inflow models for rotorcraft flight dynamics and control applications[J].Vertica,1990,14(2):147-184.
    [9] 王俊超,李建波,韩东.自转旋翼机飞行性能理论建模技术[J].航空学报,2014,35(12):3244-3253.
    [10] 吴森堂,费玉华.飞行控制系统[M].北京:机械工业出版社,2006.
    [11] 杜振宇,石庚辰.弹体飞行姿态测量方法探讨[J].探测与控制学报,2002,24(1):53-56.
    [12] 林玉荣,邓正隆.基于矢量观测确定飞行器姿态的算法综述[J].哈尔滨工业大学学报,2003,35(1):38-45.
    [13] 郑伟光.四旋翼无人机飞行姿态控制系统研究[D].长春:长春理工大学,2010.()
    [14] 邓以高,田军挺,王亚锋,等.飞行器姿态控制方法综述[J].战术导弹控制技术,2006(2):7-13.
    [15] 杜平,徐大为,刘重庆.飞机飞行姿态仿真的研究[J].红外与激光工程,2000,29(5):1-4.
    [16] 陈兵,朱纪洪,孙增圻.基于PC机的无人机仿真系统[J].系统仿真学报,2002,14(5):613-616.
    [17] 孙丽卿,张国峰,王行仁.无人机仿真训练系统[J].计算机仿真,2006,23(2):44-46.
    [18] 江杰,冯旭光,苏建彬.四旋翼无人机仿真控制系统设计[J].电光与控制,2015,22(2):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700