绿洲区玉米专用菌肥对土壤理化性质及酶活性的调理作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of special bacterial fertilizers on soil physical and chemical activities and enzyme activities in arid regions
  • 作者:高亚敏 ; 姚拓 ; 陈龙 ; 李海云 ; 罗慧琴 ; 张建贵
  • 英文作者:GAO Ya-min;YAO Tuo;CHEN Long;LI Hai-yun;LUO Hui-qin;ZHANG Jian-gui;College of Pratacultural Science,Gansu Agricultural University/Key Laboratory of Grassland Ecosystem,Ministry of Education/Pratacultural Engineering Laboratory of Gansu Province/Sino-U.S.Centers for Grazingland Ecosystem Sustainability;
  • 关键词:玉米专业菌肥 ; 土壤理化 ; 土壤酶活性 ; 微生物数量 ; 土壤微生物量 ; 土壤呼吸
  • 英文关键词:bacterial manure of corn;;soil physical chemistry;;soil enzyme activity;;microorganism count;;soil microbial biomass;;soil respiration
  • 中文刊名:CYCP
  • 英文刊名:Grassland and Turf
  • 机构:甘肃农业大学草业学院/草业生态系统教育部重点实验室/甘肃省草业工程实验室/中-美草地畜牧业可持续发展研究中心;
  • 出版日期:2019-04-20
  • 出版单位:草原与草坪
  • 年:2019
  • 期:v.39
  • 基金:国家牧草产业技术体系项目(CARS-35)资助
  • 语种:中文;
  • 页:CYCP201902002
  • 页数:8
  • CN:02
  • ISSN:62-1156/S
  • 分类号:12-19
摘要
为探究施用玉米专业菌肥对绿洲区玉米根际土壤理化性质和土壤酶活性的调理作用,寻求减少化肥施用量的有效途径。在甘肃武威黄羊镇设7个处理,不施肥(A),全量化肥(B),菌肥(不施化肥,C);85%化肥(85%B),85%化肥+菌肥(85%B+C),70%化肥(70%B),70%化肥+菌肥(70%B+C)。成熟期测定土壤养分、3大微生物计数和微生物量碳氮;并在苗期、拔节期、开花期和成熟期分别测定玉米根际土壤蔗糖酶、脲酶、碱性磷酸酶、过氧化氢酶活性和土壤呼吸。研究表明:85%B+C处理能够显著提高土壤全氮、全磷、有效磷和有机质含量;过氧化氢酶、蔗糖酶和脲酶在玉米的开花期达到最大值,碱性磷酸酶在拔节期达到最大值;蔗糖酶、脲酶和碱性磷酸酶含量均表现出处理85%B+C显著高于其他处理,过氧化氢酶处理B(全量化肥)高于其他处理,且A处理均表现为最低;施肥处理对土壤细菌数量的影响最大,是未施肥处理的1.97~5.01倍,此外,土壤真菌数量均表现出处理A(不施肥)显著高于其他各个处理;微生物生物量碳氮以85%B+C处理最优且显著优于其余处理;减量化肥并配施菌肥可以增加土壤呼吸速率。减量化肥并配施菌肥能够有效的提高绿洲区玉米地土壤的养分含量和酶活力,是减少绿洲区玉米化肥施用量的有效途径。
        In order to explore the changes in physical and chemical properties and enzyme activities of soil in rhizosphere of maize,it is an effective way to reduce the amount of the utilized chemical fertilizers.The current experiment was carried out in arid regions(HuangYang Town,Gansu Province,China) with 7 fertilization treatments(no fertilization(A);full fertilization(B);bacterial fertilizer(no chemical fertilizer,C);85% chemical fertilizer(85% B);85% fertilizer + bacterial fertilizer(85% B+C);70% fertilizer(70% B);70% fertilizer+bacterial fertilizer(70% B+C).Each treatment was performed in triplicate then we measured soil nutrients,microbial counts and microbial biomass carbon and nitrogen at maturity,and in the rhizosphere soil at the seedling,jointing,flowering and maturity stages,soil sucrase,urease,alkaline phosphatase,catalase activity and soil respiration.The present finding showed that 85% B+C(85% fertilizer + bacterial fertilizer) treatment could significantly increase soil total nitrogen,total phosphorus,available phosphorus and organic matter content;catalase,sucrase and urease reached the maximum at the flowering stage of maize;the alkaline phosphatase reached maximum at elongation stage;the contents of invertase,urease and alkaline phosphatase showed that treatment 85% B+C was significantly higher than other treatments,and catalase treatment B(Full amount of chemical fertilizer) was higher than other treatments,and A treatment showed the lowest.The fertilization treatment had the greatest impact on the number of bacteria in the soil,which was 1.97~5.01 times of unfertilized treatment.In addition,the number of soil fungi showed that A treatment(no fertilization) was significantly higher than other treatments,and microbial biomass carbon and nitrogen of 85 %B+C treatment was optimally and significantly better than the rest of the treatments;reducing fertilizer and compound fertilizer could increase soil respiration rate.In summary,the reduction of fertilizer and the application of bacterial fertilizer could effectively improve the soil nutrient content and enzyme activity of corn in arid regions.
引文
[1] 刘戈,易玉林.微生物肥料的发展现状与前景展望[J].安徽农业科学,2007,35(11):3318+3332.
    [2] 叶邦兴,唐海明,汤小明,等.中国农田污染的现状及防治对策初探[J].中国农学通报,2010,26(7):295-298.
    [3] 曾靖.我国粮食对外贸易问题探索[J].长江大学学报(自然科学版·农学卷),2008,12(2):88-91.
    [4] 李瑜琴,赵景波.西安市蔬菜污染与防治对策[J].干旱区资源与环境,2006,20(1):166-170.
    [5] 黄鹏,何甜,杜娟.配施生物菌肥及化肥减量对玉米水肥及光能利用效率的影响[J].中国农学通报,2011,27(3):76-79.
    [6] 刘云,曹莉,秦舒浩.缓解尿素对土壤微生物群落、酶活性及辣椒产量的影响[J].甘肃农业大学学报,2018,53(4):41-48.
    [7] Stamenkovi S,Be koski V,Karabegovi I,et al.Microbial fertilizers:A comprehensive review of current findings and future perspectives[J].Spanish Journal of Agricultural Research,2018,16(1):09-01.
    [8] 德科加,张德罡,王伟,等.施肥对高寒草甸植物及土壤N,P,K的影响[J].草地学报,2014,22(2):299-305.
    [9] Luis M D,Raventós J,González-Hidalgo J C.Post-fire vegetation succession in Mediterranean gorse shrublands[J].Acta Oecologica,2006,30(1):54-61.
    [10] 沈仁芳,孙波,施卫明,等.地上-地下生物协同调控与养分高效利用[J].中国科学院院刊,2017,32(6):566-574.
    [11] 刘占锋,刘国华,傅伯杰,等.人工油松林(Pinus tabulaeformis)恢复过程中土壤微生物生物量C、N的变化特征[J].生态学报,2007,27(3):1011-1018.
    [12] Kara ?,Bolat í.The effect of different land uses on soil microbial biomass carbon and nitrogen in Bart n Province[J].Turkish Journal of Agriculture and Forestry,2008,32(4):281-288.
    [13] Kayranli B,Scholz M,Mustafa A,et al.Carbon storage and fluxes within freshwater wetlands:a critical review[J].Wetlands,2010,30(1):111-124.
    [14] Tubiello F N,Salvatore M,Ferrara A F,et al.The contribution of agriculture,forestry and other land use activities to global warming,1990-2012[J].Global change biology,2015,21(7):2655-2660.
    [15] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [16] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [17] 姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006.
    [18] 马丽萍.天祝高寒草地不同扰动生境土壤微生物数量时空动态研究[D].兰州:甘肃农业大学,2004.
    [19] Vance E D,Brookes P C,Jenkinson D S.An extraction method for measuring soil microbial biomass C[J].Soil biology and Biochemistry,1987,19(6):703-707.
    [20] Brookes P C,Landman A,Pruden G,et al.Chloroform fumigation and the release of soil nitrogen:a rapid direct extraction method to measure microbial biomass nitrogen in soil[J].Soil biology and biochemistry,1985,17(6):837-842.
    [21] 马媛,师庆东,潘晓玲.西部干旱区生态景观格局动态分析[J].干旱区地理,2004(4):516-519.
    [22] Green E R,Mecsas J.Bacterial secretion systems-an overview[J].Microbiology spectrum,2016,4(1):29-34.
    [23] 梁运江,许广波.生物菌肥对水稻营养特性和土壤养分可持续性的影响[J].延边大学农学学报,2000,22(2):91-95.
    [24] 韩光,张磊,邱勤,等.复合型PGPR和苜蓿对新垦地土壤培肥效果研究[J].土壤学报,2011,48(2):405-411.
    [25] 祝英,彭轶楠,巩晓芳,等.不同微生物菌剂对当归苗生长及根际土微生物和养分的影响[J].应用与环境生物学报,2017,23(3):511-519.
    [26] 孙运杰,马海林,刘方春,等.生物肥对蓝莓根际土壤微生物学特性及土壤肥力的影响[J].水土保持学报,2015,29(3):167-171.
    [27] 井大炜,马海林,刘方春,等.盐胁迫环境下接种根际促生细菌对白蜡树根际生物学特征及其生长的影响[J].水土保持通报,2018,38(1):76-81.
    [28] 门倩,海江波,岳忠娜,等.化肥减量对玉米田土壤酶活性及微生物量的影响[J].西北农林科技大学学报(自然科学版),2012,40(6):133-140.
    [29] 李敏,王胜楠,邵美乐,等.生物菌肥冲施对黄瓜生长及土壤酶活性的影响[J].北方园艺,2015(16):153-156.
    [30] 尹亚丽,王玉琴,鲍根生,等.退化高寒草甸土壤微生物及酶活性特征[J].应用生态学报,2017,28(12):3881-3890.
    [31] 巨天珍,任海峰,孟凡涛,等.土壤微生物生物量的研究进展[J].广东农业科学,2011,38(16):45-47.
    [32] 刘合明,刘树庆.不同施氮水平对华北平原冬小麦土壤CO2通量的影响[J].生态环境,2008,17(3):1125-1129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700