海南岛海岸带沙地土壤碳氮磷含量及碳氮比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:C, N, and P content and C∶N ratio in sandy soil in the coastal zone of Hainan Island
  • 作者:张书齐 ; 许全 ; 杨秋 ; 蒋亚敏 ; 王旭 ; 刘文杰
  • 英文作者:ZHANG Shuqi;XU Quan;YANG Qiu;JIANG Yamin;WANG Xu;LIU Wenjie;College of Ecology and Environment, Hainan University;
  • 关键词:海岸带 ; 碳氮比 ; 海防林 ; 木麻黄 ; 海南岛
  • 英文关键词:coastal zone;;C∶N ratio;;coastal shelterbelts;;Casuarina equisetifolia;;Hainan Island
  • 中文刊名:FJLB
  • 英文刊名:Journal of Forest and Environment
  • 机构:海南大学生态与环境学院;
  • 出版日期:2019-06-28 15:36
  • 出版单位:森林与环境学报
  • 年:2019
  • 期:v.39
  • 基金:海南省自然科学基金项目(417050,418MS019);; 国家自然科学基金地区科学基金项目(41663010);; 海南大学科研启动项目(kydq1604,kyqd1605)
  • 语种:中文;
  • 页:FJLB201904011
  • 页数:6
  • CN:04
  • ISSN:35-1327/S
  • 分类号:64-69
摘要
研究海岸带沙地防护林土壤碳氮磷含量及其计量学特征,可为评估防护林对土壤养分和碳汇功能的改善提供理论依据。以海南岛海岸带沿岸12个市(县)的24处沙地(林下和光滩)土壤为研究对象,通过对不同土层深度(0~10 cm和10~20 cm)的土壤有机碳(SOC)、全氮(TN)和全磷(TP)含量进行测定,分析海岸带沙地土壤碳氮磷生态化学计量学特征,比较林下和光滩的差异,探究其对土壤碳氮磷含量和化学计量学特征的影响,并对海岸带碳储量进行估算。结果表明:林下0~10 cm土层SOC、TN和TP的平均含量分别为4.33、0.38和0.26 g·kg~(-1),光滩相同深度土层SOC、TN、TP平均含量分别是1.77、0.21和0.19 g·kg~(-1);林下10~20 cm土层SOC、TN和TP的平均含量为3.05、0.35和0.18 g·kg~(-1),光滩相同深度土层SOC、TN和TP平均含量分别是1.18、0.23和0.15 g·kg~(-1)。海岸带沙地0~10 cm和10~20 cm土层的平均碳氮比(C∶N)分别为12.44和8.79。相关性分析表明,林下和光滩土壤TN含量均与年平均气温显著正相关,光滩土壤SOC含量与年均气温显著正相关。估算出海南岛海岸带0~20 cm土层土壤的碳储量约为4.08 Tg。虽然海南岛海岸带沙地土壤的碳氮磷含量及其化学计量比普遍较低,但海防林能显著改善土壤碳氮磷养分,提高土壤碳储量。
        C, N, and P content, as well as their stoichiometry, provide theoretical basis for evaluating the improvement in soil nutrient composition and C sink function in soils of coastal shelterbelts. The sandy soil samples from 24 sites were collected in duplicate(shelter belts were of Casuarina equisetifolia and on bare beach) at different soil depths(0-10 cm and 10-20 cm) from 12 counties around the coastal zone of Hainan Island. The soil organic C(SOC), total N(TN), total P(TP), and C∶N ratio were measured. The differences in SOC, TN, and TP content between the shelterbelts and the bare beaches were compared, and the factors influencing these variables were analyzed. The results showed that the average values of SOC, TN, and TP at the depth of 0-10 cm in the coastal shelterbelts were 4.33, 0.38, and 0.26 g·kg~(-1), respectively, while those of the soil in bare beaches, were 1.77,0.21, and 0.19 g·kg~(-1 ). Similarly, the average values of SOC, TN, and TP at the depth of 10-20 cm in the coastal shelterbelt was 3.05, 0.35, and 0.18 g·kg~(-1), respectively, while the values at the same depth in the bare beaches were 1.18, 0.23, and 0.15 g·kg~(-1 ). The average soil C∶N ratio was 12.44 at the depth of 0-10 cm and 8.79 at depth of 10-20 cm in the coastal sandy soils. There was a significant correlation between TN and the annual mean temperature in both the coastal shelterbelts and bare beaches, and between SOC and annual mean temperature only in the bare beaches. SOC storage was approximately 4.08 Tg at the depth of 0-20 cm in the coastal area of Hainan Island. The results indicated that there were generally low SOC, TN, and TP content and C∶N ratio in the sandy soil in the coastal zone of Hainan Island, while the coastal shelterbelts play significant roles in the improvement of soil nutrient content.
引文
[1] 陈德志,叶功富,卢昌义,等.沙质海岸前沿不同下垫面的沙粒度参数特征[J].森林与环境学报,2015,35(3):272-278.
    [2] DONEY S C.The growing human footprint on coastal and open-ocean biogeochemistry[J].Science,2010,328(5985):1 512-1 516.
    [3] 钟春柳,黄义雄,曹春福,等.不同海岸梯度下木麻黄防护林生态化学计量特征[J].亚热带资源与环境学报,2017,12(2):22-29,37.
    [4] 苏永中,赵哈林,张铜会.几种灌木、半灌木对沙地土壤肥力影响机制的研究[J].应用生态学报,2002,13(7):802-806.
    [5] 瞿王龙,杨小鹏,张存涛,等.干旱、半干旱地区天然草原灌木及其肥岛效应研究进展[J].草业学报,2015,24(4):201-207.
    [6] 刘成路,冉焰辉,陶悠,等.海南岛海岸线木麻黄林现状调查[J].林业资源管理,2013(2):102-106,118.
    [7] 王春乙.海南气候[M].北京:气象出版社,2014:7.
    [8] 鲍士旦,江荣风,杨超光,等.土壤农化分析[M].3版.北京:中国农业出版社,2000:30-34.
    [9] 朱凤武,徐彩瑶,濮励杰,等.苏北滩涂围垦区土壤碳氮磷含量及其生态化学计量特征[J].中国土地科学,2017,31(12):77-83.
    [10] 邱岭军,何宗明,胡欢甜,等.滨海沙地不同树种碳氮磷化学计量特征[J].应用与环境生物学报,2017,23(3):555-559.
    [11] 林宝平,林思祖,何宗明,等.不同碳输入方式对沿海防护林土壤氮库的影响[J].森林与环境学报,2016,36(4):385-391.
    [12] 黄买.海岸沙地木麻黄人工林的CNP生态化学计量特征[D].福州:福建农林大学,2014.
    [13] 隋燕,张丽,穆晓东,等.海南岛海岸线变迁遥感监测与分析[J].海洋学研究,2018,36(2):36-43.
    [14] 刘文杰,陈生云,胡凤祖,等.疏勒河上游土壤磷和钾的分布及其影响因素[J].生态学报,2012,32(17):5 429-5 437.
    [15] CLEVELAND C C,LIPTZIN D.C∶N∶P stoichiometry in soil:is there a “Redfield ratio” for the microbial biomass[J].Biogeochemistry,2007,85(3):235-252.
    [16] 刘兴华.黄河三角洲湿地植物与土壤C、N、P生态化学计量特征研究[D].泰安:山东农业大学,2013.
    [17] 朱小叶,王娜,方晰,等.中亚热带不同退化林地土壤有机碳矿化的季节动态[J].生态学报,2019.DOI:10.5846/stxb201801090069.
    [18] 蔺银鼎,梁锋.城市灌木群落小气候效应的时空分布[J].中国农学通报,2007,23(3):313-317.
    [19] 刘世荣,王晖,栾军伟.中国森林土壤碳储量与土壤碳过程研究进展[J].生态学报,2011,31(19):5 437-5 448.
    [20] ROUNSEVELL M D A,EVANS S P,BULLOCK P.Climate change and agricultural soils:impacts and adaptation[J].Climatic Change,1999,43(4):683-709.
    [21] 潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-618.
    [22] 张固成,傅杨荣,何玉生,等.海南岛土壤有机碳空间分布特征及储量[J].热带地理,2011,31(6):554-558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700