硫酸盐还原菌的分纯及对Cd~(2+)钝化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Isolation of Sulfate-reducing Bacteria and Study on Its Passivation of Cd~(2+)
  • 作者:董净 ; 代群威 ; 赵玉连 ; 邓远明 ; 黄雪菊 ; 韩林宝 ; 罗红霞
  • 英文作者:DONG Jing;DAI Qunwei;ZHAO Yulian;DENG Yuanming;HUANG Xueju;HAN Linbao;LUO Hongxia;School of Environment and Resource, Southwest University of Science and Technology;College of Life Science and Engineering, Southwest University of Science and Technology;Soil and Groundwater Research Institute, Sichuan Academy of Environmental Sciences;
  • 关键词:硫酸盐还原菌 ; 土壤重金属污染 ; Cd~(2+)钝化 ; 生物矿化 ; 土壤修复
  • 英文关键词:sulfate-reducing bacteria;;soil heavy metals pollution;;passivation of Cd~(2+);;biomineralization;;soil remediation
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:西南科技大学环境与资源学院;西南科技大学生命科学与工程学院;四川省环境保护科学研究院土壤地下水研究所;
  • 出版日期:2019-05-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:国家自然科学基金(41130746)
  • 语种:中文;
  • 页:FJKS201905006
  • 页数:7
  • CN:05
  • ISSN:42-1245/X
  • 分类号:40-46
摘要
该研究从土壤中分离纯化得到1株耐镉性较好的细菌,通过对其生长特性、菌液Cd~(2+)浓度变化及矿化产物特性分析,探究菌株对Cd~(2+)的钝化行为及去除效果。结果表明,实验菌株初步被确定为硫酸盐还原菌(SRB)。SRB的去除效果随Cd~(2+)浓度增大而降低。在其生长过程中液相pH不断升高,有利于诱导合成硫化镉。当Cd~(2+)初始浓度为10 mg/L时,菌株对Cd~(2+)的去除率达到95%。此时,SRB的适应性最强且钝化效果稳定。Cd~(2+)初始浓度为40 mg/L时,菌株对Cd~(2+)的去除率为75%。通过SEM-EDS和XRD表征确定其矿化产物为硫化镉。研究显示,SRB可以有效钝化游离态的重金属离子,有望为突发性、高浓度重金属污染地区的原位治理提供新的思路。
        In this study, a Cd-tolerant bacterium was isolated from soil. The passivation behaviors and removal effect of bacteria on Cd~(2+)were investigated by analyzing its growth characteristics, Cd~(2+)concentration changes and mineralization products. The results showed that the experimental strain was initially identified as sulfate-reducing bacteria(SRB). The removal efficiency of SRB decreased with the increase of Cd~(2+)concentration. When the initial concentration of Cd~(2+)was 10 mg/L,the removal rate of Cd~(2+)was 95%. At this point, SRB has the strongest adaptability and stable passivation effect. When the initial concentration of Cd~(2+)was 40 mg/L,the removal rate of Cd~(2+)was 75%. The mineralized product was determined to be cadmium sulfide by SEM-EDS and XRD characterization. The experimental study showed that SRB could effectively free passivation of heavy metal ions, which can provide a new method for in situ treatment of sudden, high concentration of heavy metal pollution in the area.
引文
[1]Hua Ming,Zhang Shujuan,Pan Bingcai,et al.Heavy metal removal from water/wastewater by nanosized metal oxides:a review[J].Journal of Hazardous Materials,2012,211/212:317-331.
    [2]环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014,36(5):1689-1692.Ministry of Environmental Protection,Ministry of Land and Resources.National survey on soil pollution status[J].China Environmental Protection Industry,2014,36(5):1689-1692.
    [3]Wang Jianxu,Feng Xinbin,Anderson C W N,et al.Remediation of mercury contaminated sites-a review[J].Journal of Hazardous Materials,2012,221/222(1):1-18.
    [4]袁金蕊,郭富睿,邹冬生,等.镉对土壤微生物的影响及微生物修复镉污染研究进展[J].湖南农业科学,2018(3):114-117,122.Yuan Jinrui,Guo Furui,Zou Dongsheng,et al.Research progress in the influence of cadmium on soil microorganism and bioremediation technology[J].Hunan Agricultural Sciences,2018(3):114-117,122.
    [5]Gomes H I,Dias-ferreir C,Ribeiro A B.Electrokinetic remediation of organochlorines in soil:enhancement techniques and integration with other remediation technologies[J].Chemosphere,2012,87(10):1077-1090.
    [6]Hanauer T,Felix-henningsen P,Steffens D,et al.In situ stabilization of metals(Cu,Cd,and Zn)in contaminated soils in the region of Bolnisi,Georgia[J].Plant&Soil,2011,341(1/2):193-208.
    [7]Bhargava A,Carmona F F,Bhargava M,et al.Approaches for enhanced phytoextraction of heavy metals[J].Journal of Environmental Management,2012,105:103-120.
    [8]Hang Weiwei,Chen Lingxin,Liu Dongyan.Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction[J].Applied Microbiology&Biotechnology,2012,93(3):1305-1314.
    [9]Castro H F,Williams N H,Ogram A.Phylogeny of sulfatereducing bacteria[J].Fems Microbiology Ecology,2000,31(1):1-9.
    [10]Luptakova A,Macingova E.Alternative substrates of bacterial sulphate reduction suitable for the biological-chemical treatment of acid mine drainage[J].Acta Montanistica Slovaca,2012,17(1):74-80.
    [11]Fishman K S,Akimov V N,Suzina N E,et al.Sulfate-reducing bacteria Desulfobulbus sp strain BH from a freshwater lake in Guizhou Province,China[J].Inland Water Biology,2013,6(1):13-17.
    [12]Ryzhmanova Y,Nepomnyashchaya Y,Abashina T,et al.New sulfate-reducing bacteria isolated from Buryatian alkaline brackish lakes:description of Desulfonatronum buryatense sp.nov[J].Extremophiles,2013,17(5):851-859.
    [13]Li Meng,Cheng Xiaohui,Guo Hongxian,et al.Biomineralization of carbonate by terrabacter tumescens for heavy metal removal and biogrouting applications[J].Journal of Environmental Engineering,2016,142(9):C4015005.
    [14]余飞,万俊锋,赵雅光,等.硫酸盐还原菌SRB除砷的影响因素[J].环境工程学报,2016,10(7):3898-3904.Yu Fei,Wan Junfeng,Zhao Yaguang,et al.Factors influencing arsenic removal by sulfate-reducing bacteria[J].Chinese Journal of Environmental Engineering,2016,10(7):3898-3904.
    [15]刘维维,陈华君,欧根能,等.微生物法处理重金属尾矿的修复机制研究[J].绿色科技,2017(24):21-22.Liu Weiwei,Chen Huajun,Ou Genneng,et al.Study on the repairing mechanism of heavy metal tailings treated by microbial method[J].Journal of Green Science and Technology,2017(24):21-22.
    [16]Barbosa L P,Costa P F,Bertolino S M,et al.Nickel,manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio[J].World Journal of Microbiology&Biotechnology,2014,30(8):2171-2180.
    [17]Kiran M G,Pakshirajan K,Das G.Heavy metal removal from multicomponent system by sulfate reducing bacteria:mechanism and cell surface characterization[J].Journal of Hazardous Materials,2017,324(Pt A):62-70.
    [18]Lin Ye,Cook N J,Ciobanu C L.Trace and minor elements in sphalerite from base metal deposits in south China:a LA-ICPMS study[J].Ore Geology Reviews,2011,39(4):188-217.
    [19]涂光炽.分散元素地球化学及成矿机制[M].北京:地质出版社,2004.Tu Guangzhi.Geochemistry and Metallogenic Mechanism of Dispersed Elements[M].Beijing:Geological Publishing House,2004.
    [20]Zhu Chuanwei,Wen Hanjie,Zhang Yuxu,et al.Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J].Science China Earth Sciences,2013,56(12):2056-2065.
    [21]朱传威.川滇黔地区铅锌矿床中分散元素镉和锗同位素地球化学及其应用[D].北京:中国科学院大学,2014.Zhu Chuanwei.Isotopic Geochemistry of Dispersed Elements Cadmium and Germanium in Lead-Zinc Deposits in Sichuan-Yunnan-Guizhou Region and Its Application[D].Beijing:University of Chinese Academy of Sciences,2014.
    [22]Homer T J,Rickaby R E M,Henderson G M.Isotopic fractionation of cadmium into calcite[J].Earth&Planetary Science Letters,2011,312(1/2):243-253.
    [23]JR Postgate.The Sulphate Reducing Bacteria[M].2nd Edition.UK:Cambridge University Press,1983.
    [24]万海清,苏仕军,葛长海,等.一种分离培养硫酸盐还原菌的改进方法[J].应用与环境生物学报,2003,9(5):561-562.Wan Haiqing,Su Shijun,Ge Changhai,et al.A improved method for isolation and cultivation of sulfate-reducing bacteria[J].Chin J Appl Environ Biol,2003,9(5):561-562.
    [25]陈一鸣,吴雁,马远荣,等.硫酸盐还原菌的分离纯化及生长特性研究[J].河南化工,2011,28(2):29-32.Chen Yiming,Wu Yan,Ma Yuanrong,et al.Isolation,purification and growth characteristics of sulfate reducing bacteria[J].Henan Chemical Industry,2011,28(2):29-32.
    [26]Wang Kai,Sheng Yuxing,Cao Hongbin,et al.Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell(MEC)reactor[J].Chemical Engineering Journal,2017,307(1):150-158.
    [27]张甲耀.重金属对微生物的毒性效应[J].环境科学,1983(3):71-74,64.Zhang Jiayao.Toxic effects of heavy metals on microorganisms[J].Environmental Science,1983(3):71-74,64.
    [28]Li Li,Qian Chunxiang,Liang Cheng,et al.A laboratory investigation of microbe-inducing CdCO3precipitate treatment in Cd2+contaminated soil[J].Journal of Soils&Sediments,2010,10(2):248-254.
    [29]李淑英,马玉琪,苏亚丽,等.重金属胁迫培养对微生物生长的影响[J].贵州农业科学,2012(2):90-94.Li Shuying,Ma Yuqi,Su Yali,et al.Effect of heavy metal stress on microbial growth[J].Guizhou Agricultural Science,2012(2):90-94.
    [30]李健中.重金属对生物脱氮除磷系统中微生物的毒性影响[D].广州:广州大学,2010.Li Jianzhong.Study on the Toxicity Effects of Heavy Metals on Microbial in Biological Nitrogen and Phosphorus Removal System[D].Guangzhou:Guangzhou University,2010.
    [31]Li Q,Csetenyi L,Gadd G M.Biomineralization of metal carbonates by Neurospora crassa[J].Environmental Science and Technology,2014,48(24):14409-14416.
    [32]高艳,白红娟,贡俊,等.硫酸盐还原菌制备纳米硫化镉的研究[J].化工科技,2015,23(2):1-4.Gao Yan,Bai Hongjuan,Gong Jun,et al.Study on preparation of cadmium sulfide nanoparticles by sulfate reducing bacteria[J].Science&Technology in Chemical Industry,2015,23(2):1-4.
    [33]Rickard D.Metal sulfide complexes and clusters[J].Reviews in Mineralogy&Geochemistry,2006,61(1):421-504.
    [34]Costa J M,Rodriguez R P,Sancinetti G P.Removal sulfate and metals Fe2+,Cu2+,and Zn2+,from acid mine drainage in an anaerobic sequential batch reactor[J].Journal of Environmental Chemical Engineering,2017,5(2):1985-1989.
    [35]Rios Valenciana E E,Briones-Gallardo R,Chazaro-Ruiz LF,et al.Role of indigenous microbiota from heavily contaminated sediments in the bioprecipitation of arsenic[J].Journal of Hazardous Materials,2017,339:114.
    [36]Sitte J,Akob D M,Kaufmann C,et al.Microbial links between sulfate reduction and metal retention in uranium-and heavy metal-contaminated soil[J].Applied&Environmental Microbiology,2010,76(10):3143-52.
    [37]Weber F A,Voegelin A,Kaegi R,et al.Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil[J].Nature Geoscience,2009,2(4):267-271.
    [38]Martins M,Faleiro M L,Barros R J,et al.Characterization and activity studies of highly heavy metal resistant sulphatereducing bacteria to be used in acid mine drainage decontamination[J].Journal of Hazardous Materials,2009,166(2):706-713.
    [39]Muyzer G,Stams A J M.The ecology and biotechnology of sulphate-reducing bacteria[J].Nature Reviews Microbiology,2008,6(6):441-454.
    [40]赵越,姚俊,王天齐,等.碳酸盐矿化菌的筛选与其吸附和矿化Cd2+的特性[J].中国环境科学,2016,36(12):3800-3806.Zhao Yue,Yao Jun,Wang Tianqi,et al.Screening of carbonate-biomineralization microbe and its cadmium removal characteristics based on adsorption and biomineralization[J].China Environmental Science,2016,36(12):3800-3806.
    [41]王瑞兴,钱春香,吴淼,等.微生物矿化固结土壤中重金属研究[J].功能材料,2007,38(9):1523-1526,1530.Wang Ruixing,Qian Chunxiang,Wu Miao,et al.Study on heavy metals in soil mineralized by bacteria[J].Journal of Functional Materials,2007,38(9):1523-1526,1530.
    [42]成艳,赵兴青.碳酸盐矿化菌固结Pb2+的生物矿化[J].环境科学研究,2016,29(10):1513-1520.Cheng Yan,Zhao Xingqing.Study on the consolidation and mineralization of Pb2+by carbonate-mineralization bacteria[J].Research of Environmental Science,2016,29(10):1513-1520.
    [43]许凤琴,代群威,侯丽华,等.碳酸盐矿化菌的分纯及其对Sr2+的矿化特性研究[J].高校地质学报,2015(3):376-381.Xu Fengqin,Dai Qunwei,Hou Lihua,et al.Isolation and Sr2+mineralization mediated by carbonate mineralization bacteria[J].Geological Journal of China Universities,2015(3):376-381.
    [44]Achal V,Pan Xiangliang,Zhang Daoyong.Remediation of copper-contaminated soil by Kocuria flava CR1,based on microbially induced calcite precipitation[J].Ecological Engineering,2011,37(10):71601-1605.
    [45]黄志,徐建平,马春艳,等.硫酸盐还原菌处理重金属离子[J].重庆理工大学学报:自然科学版,2013,27(3):43-46.Huang Zhi,Xu Jianping,Ma Chunyan,et al.Study on removal of the heavy-metal by sulfate reducing bacteria[J].Journal of Chongqing University of Technology:Natural Science Edition,2013,27(3):43-46.
    [46]党政,代群威,赵玉连,等.生物矿化在重金属污染治理领域的研究进展[J].环境科学研究,2018,31(7):1182-1192.Dang Zheng,Dai Qunwei,Zhao Yulian,et al.Research progress of biomineralization in the treatment of heavy metal contamination[J].Research of Environmental Science,2018,31(7):1182-1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700