基于材料损伤的钢板加固半刚性组合节点抗倒塌性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on anti-collapse performance of semi-rigid composite joint strengthened by steel plate considering material damage
  • 作者:高山 ; 郭兰慧 ; 张素梅
  • 英文作者:GAO Shan;GUO Lanhui;ZHANG Sumei;Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University;Postdoctoral Station of Civil Engineering, Chongqing University;School of Civil Engineering, Harbin Institute of Technology;
  • 关键词:组合结构 ; 半刚性节点 ; 连续倒塌 ; 有限元分析 ; 材料损伤 ; 抗倒塌性能
  • 英文关键词:composite structure;;semi-rigid joint;;progressive collapse;;FEA;;material damage;;anti-collapse performance
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:西京学院陕西省混凝土结构安全与耐久性重点实验室;重庆大学土木工程博士后流动站;哈尔滨工业大学土木工程学院;
  • 出版日期:2018-12-17 17:03
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划(2016YFC0701203);; 国家自然科学基金项目(51408106);; 陕西省教育厅科研计划项目(17JK1154);; 西京学院高层次人才基金(XJ17T07)
  • 语种:中文;
  • 页:JZJB201903025
  • 页数:7
  • CN:03
  • ISSN:11-1931/TU
  • 分类号:244-250
摘要
当结构中竖向承重构件发生破坏后,节点的抗倒塌性能决定了荷载是否能可靠地传递给相邻结构构件,避免结构出现连续倒塌。为了提高节点的转动能力和抗倒塌能力,设计了一种钢板加固的半刚性组合节点,提出其理论模型,并推导相应的变形公式,建立基于材料损伤的有限元分析模型对理论模型进行验证,并对该组合节点的抗倒塌性能进行分析。结果表明:钢板加强的节点并没有影响结构的前期性能,而是使结构提前进入过渡阶段,并且明显增大了结构的极限位移和极限荷载;该节点的理论模型及相应的变形公式可以精确预测钢板参与工作时对应的节点竖向位移;钢板两端连接点的初始距离和钢梁高度决定了钢板参与受力的时刻;采用类似具有"延时"作用的柔性组件可以起到与钢板相同的加固效果。
        When gravity members in a structure are damaged, the anti-collapse performance of the joints determines whether the load can be reliably transferred to the adjacent structural members and whether progressive collapse of the structure can be avoided. In order to improve the rotation capacity and anti-collapse performance of the joints, a semi-rigid composite joint strengthened by steel plate was designed. A theoretical model and a deformation prediction formula of the joint were proposed. A finite element model considering material damage was developed to validate the theoretical model, and the anti-collapse performance of the composite joint was analyzed. The results show that the joint strengthened by steel plate has no significant effect on the early performance of the structure, but the structure advances into the transient stage earlier, and the ultimate displacement and ultimate load of the structure are remarkably increased. The theoretical model and the corresponding deformation formula can accurately predict the vertical displacement of the joint when the steel plate contributes to load carrying capacity. The initial distance of the connecting point at both ends of the steel plate and the height of the steel beam determine the moment when the steel plate starts to take load. The same retrofitting effect can be achieved with flexible components that have a ‘delay' effect.
引文
[1] Department of Defense. Design of structures to resist progressive collapse: UFC 4- 023- 03[S]. Washington DC, USA: Department of Defense, 2009.
    [2] United States General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects: GSA2003[S]. Washington DC, USA: United States General Services Administration, 2003.
    [3] YI Weijian, ZHANG Fanzhen, KUNNATH S K. Progressive collapse performance of RC flat plate frame structures[J]. Journal of Structural Engineering, 2014, 140(9): 758-782.
    [4] YANG Bo, TAN Kanghai, XIONG Gang. Experimental study about composite frames under an internal column-removal scenario[J]. Journal of Constructional Steel Research, 2016, 121:341-351.
    [5] HOU Jian, SONG Li. Progressive collapse resistance of RC frames under a side column removal scenario: the mechanism of explained[J]. International Journal of Concrete Structures and Materials, 2016, 10(2):237-247.
    [6] QIAN Kai, LI Bing, ZHANG Zhongwen. Testing and simulation of 3D effects on progressive collapse resistance of RC buildings[J]. Magazine of Concrete Research, 2014, 66(1): 1-16.
    [7] GUO Lanhui, GAO Shan, WANG Yuyin, et al. Tests of rigid composite joints subjected to bending moment combined with tension[J]. Journal of Constructional Steel Research, 2014, 95(1): 44-55.
    [8] 霍静思, 王宁, 陈英. 钢框架焊接梁柱节点子结构抗倒塌性能试验研究[J]. 建筑结构学报, 2014, 35(4): 100-108.(HUO Jingsi, WANG Ning, CHEN Ying. Experimental study on collapse resistance of welded beam-column connection substructure of steel frame based on seismic design[J]. Journal of Building Structures, 2014, 35(4): 100-108. (in Chinese))
    [9] IZZUDDIN B A, VLASSIS A G, NETHERCOT D A. Progressive collapse of multi-storey buildings due to sudden column loss: part Ⅰ: simplified assessment framework[J]. Engineering Structures, 2008, 30(5): 1308-1318.
    [10] 陆新征, 李易, 叶列平,等. 钢筋混凝土框架结构抗连续倒塌设计方法的研究[J]. 工程力学, 2008, 25(增刊Ⅱ):150-157.(LU Xinzheng,LI Yi,YE Lieping,et al. Study on design method to resist progressive collapse for reinforced concrete frames[J]. Engineering Mechanics, 2008, 25(Suppl.Ⅱ):150-157. (in Chinese))
    [11] 钱稼茹, 胡晓斌. 多层钢框架连续倒塌动力效应分析[J]. 地震工程与工程振动, 2008, 28(2):8-14.(QIAN Jiaru,HU Xiaobin. Dynamic effect analysis of progressive collapse of multi-story steel frames[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(2):8-14. (in Chinese))
    [12] LI Ling, WANG Wei, CHEN Yiyi, et al. Experimental investigation of beam-to-tubular column moment connections under column removal scenario[J]. Journal of Constructional Steel Research,2013,88(5):244-255.
    [13] 孔祥雄, 史铁花, 程绍革. 基于材料损伤和失效准则的钢结构在强震下倒塌模拟分析方法[J]. 土木工程学报, 2014, 47(9):38- 44.(KONG Xiangxiong, SHI Tiehua, CHENG Shaoge. A numerical simulation method for steel structure collapse under rare earthquake based on the material damage and failure laws[J]. China Civil Engineering Journal, 2014, 47(9):38- 44. (in Chinese))
    [14] 王开强, 李国强, 杨涛春. 考虑悬链线效应的约束钢梁在分布荷载作用下的性能:Ⅰ:理论模型[J]. 土木工程学报, 2010, 43(1):1-7.(WANG Kaiqiang,LI Guoqiang,YANG Taochun. A study of restrained steel beams with catenary action under distributed load: part Ⅰ: theoretical model[J]. China Civil Engineering Journal, 2010, 43(1):1-7. (in Chinese))
    [15] 高山. 组合梁平面钢框架抗连续倒塌性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014: 34-38.(GAO Shan. Progressive collapse behavior of planar steel frame with composite beam[D]. Harbin: Harbin Institute of Technology, 2014: 34-38. (in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700