基于莽草酸途径微生物合成芳香族化合物及其衍生物的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on the biosynthesis of aromatic compounds by microorganisms
  • 作者:江晶洁 ; 刘涛 ; 林双君
  • 英文作者:JIANG Jing-Jie;LIU Tao;LIN Shuang-Jun;The State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology,Shanghai Jiao Tong University;Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences;
  • 关键词:芳香族化合物 ; 代谢工程 ; 微生物合成
  • 英文关键词:aromatic chemicals;;metabolic engineering;;microbial synthesis
  • 中文刊名:SMKX
  • 英文刊名:Chinese Bulletin of Life Sciences
  • 机构:上海交通大学生命科学技术学院微生物代谢国家重点实验室;中国科学院天津工业生物技术研究所;
  • 出版日期:2019-05-15
  • 出版单位:生命科学
  • 年:2019
  • 期:v.31;No.242
  • 基金:国家自然科学基金项目(21632007,31425001)
  • 语种:中文;
  • 页:SMKX201905003
  • 页数:19
  • CN:05
  • ISSN:31-1600/Q
  • 分类号:12-30
摘要
芳香族化合物是一类重要的天然产物,在自然界中广泛存在,应用于食品、医药、化工等多个领域,主要通过化学合成、植物提取等方式获得。近年来,随着石化资源减少、人类环保意识的加强,微生物合成芳香族化合物及其衍生物成为热点。莽草酸途径合成的芳香族化合物及其衍生物多种多样。现重点综述通过莽草酸途径合成的"达菲"药物前体莽草酸、大宗化学品己二酸前体顺,顺-粘康酸、芳香族氨基酸及其他高附加值芳香族氨基酸衍生物的微生物合成研究进展,为建立生产高附加值化合物的细胞工厂提供参考。
        Aromatic compounds are an important class of natural products. They are widely distributed in nature and are used in many fields such as food, medicine, and chemical industry. They are mainly obtained by chemical synthesis and plant extraction. In recent years, with the reduction of petrochemical resources and the enhancement of human environmental awareness, microbial synthesis of aromatic compounds and their derivatives has become a hot spot. The aromatic compounds and their derivatives synthesized by the shikimate pathway are diverse. This review focuses on the advances in the microbial synthesis of shikimic acid(the synthetic precursor of oseltamivir),cis,cis-muconic acid(the precursor of the bulk chemical adipic acid), aromatic amino acids, and other high valueadded aromatic amino acid derivatives synthesized by the shikimate pathway. This review will provide some advice on the establishment of cell factories for the production of high value-added compounds.
引文
[1]Gottardi M,Reifenrath M,Boles E,et al.Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae:bioconversion from glucose.FEMS Yeast Res,2017,17:fox035
    [2]鄢芳清,韩亚昆,李娟,等.大肠杆菌芳香族氨基酸代谢工程研究进展.生物加工过程,2017,15:32-9
    [3]Jiang M,Zhang H.Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in Escherichia coli.Curr Opin Biotech,2016,42:1-6
    [4]Tzin V,Galili G,Aharoni A.Shikimate pathway and aromatic amino acid biosynthesis[M]//Encyclopedia of Life Sciences.Chichester:Wiley,2012
    [5]St?ckigt J,Zenk MH.Enzymatic synthesis of chlorogenic acid from caffeoyl coenzyme A and quinic acid.FEBSLett,1974,42:131-4
    [6]Pittard J,Yang J.Biosynthesis of the aromatic amino acids.Ecosal Plus,2008,doi:10.1128/ecosalplus.3.6.1.8
    [7]向莉,李盾.达菲的主要合成中间体莽草酸获得的新进展.中国医药导报,2006,3:57-8
    [8]Davis BD.Aromatic biosynthesis.I.The role of shikimic acid.J Biol Chem,1951,191:315-25
    [9]Dell KA,Frost JW.Identification and removal of impediments to biocatalytic synthesis of aromatics from D-glucose:rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis.J Am Chem Soc,1993,115:11581-9
    [10]Chandran SS,Yi J,Draths KM,et al.Phosphoenolpyruvate availability and the biosynthesis of shikimic acid.Biotechnol Prog,2010,19:808-14
    [11]Escalante A,Calderón R,Valdivia A,et al.Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system.Microb Cell Fact,2010,9:21
    [12]Rodriguez A,Martinez JA,Noemi HC,et al.Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF.Microb Cell Fact,2013,12:86
    [13]Cui YY,Ling C,Zhang YY,et al.Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.Microb Cell Fact,2014,13:21
    [14]Kogure T,Kubota T,Suda M,et al.Metabolic engineering of corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.Metab Eng,2016,38:204-16
    [15]Li L,Tu R,Song G,et al.Development of a synthetic3-dehydroshikimate biosensor in Escherichia coli for metabolite monitoring and genetic screening.ACS Synth Biol,2019,8:297-306
    [16]Draths KM,Frost JW.Environmentally compatible synthesis of catechol from D-glucose.J Am Chem Soc,1994,116:399-400
    [17]Wei N,Draths KM,Frost JW.Benzene-free synthesis of adipic acid.Biotechnol Prog,2002,18:201-11
    [18]Sun XX,Lin YH,Huang Q,et al.A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate.Appl Environ Microb,2013,79:4024-30
    [19]Lin Y,Sun X,Yuan Q,et al.Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.Metab Eng,2014,23:62-9
    [20]Sun X,Lin Y,Yuan Q,et al.Biological production of muconic acid via a prokaryotic 2,3-dihydroxybenzoic acid decarboxylase.ChemSusChem,2015,7:2478-81
    [21]Thompson B,Pugh S,Machas M,et al.Muconic acid production via alternative pathways and a synthetic'metabolic funnel'.ACS Synth Biol,2017,7:565-75
    [22]Christian W,Christine B,Sheila W,et al.Biosynthesis of cis,cis-muconic acid and its aromatic precursors,catechol and protocatechuic acid,from renewable feedstocks by Saccharomyces cerevisiae.Appl Environ Microb,2012,78:8421-30
    [23]Curran KA,Leavitt JM,Karim AS,et al.Metabolic engineering of muconic acid production in Saccharomyces cerevisiae.Metab Eng,2013,15:55-66
    [24]Brückner C,Oreb M,Kunze G,et al.An expanded enzyme toolbox for production of cis,cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae.FEMS Yeast Res,2018,18:foy017
    [25]Wang S,Bilal M,Zong Y,et al.Development of a plasmid-free biosynthetic pathway for enhanced muconic acid production in Pseudomonas chlororaphis HT66.ACSSynth Biol,2018,7:1131-42
    [26]Pop C,Vlase L,Tamas M.Natural resources containing arbutin.Determination of arbutin in the leaves of Bergenia crassifolia(L.)Fritsch.acclimated in Romania.Not Bot Horti Agrobo,2009,37:129-32
    [27]Ikuyo H,Ken-Ichi N,Isao K.Structural criteria for depigmenting mechanism of arbutin.Phytother Res,2010,18:475-9
    [28]Bang SH,Han SJ,Kim DH.Hydrolysis of arbutin to hydroquinone by human skin bacteria and its effect on antioxidant activity.J Cosmet Dermatol,2010,7:189-93
    [29]Lee HJ.Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells.Inflamma Res,2012,61:817-25
    [30]杨祥开,成春燕,欧娜,等.酶法生产α-熊果苷的纯化工艺.华中农业大学学报,2017,36:57-62
    [31]姚斌,沈晓兰,潘亚菊.α-熊果苷的研究进展.中国现代应用药学,2005,22:32-3
    [32]Nishimura T,Kometani T,Takii H,et al.Purification and some properties ofα-amylase from Bacillus subtilis X-23that glucosylates phenolic compounds such as hydroquinone.J Ferm Bioeng,1994,78:31-6
    [33]Kitao S,Sekine H.α-D-glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production ofα-arbutin.J Agr Chem Soc Japan,1994,58:38
    [34]Seo ES,Kang J,Lee JH,et al.Synthesis and characterization of hydroquinone glucoside using Leuconostoc mesenteroides dextransucrase.Enz Micro Tech,2009,45:355-60
    [35]Eppink MH,Boeren SA,Vervoort J,et al.Purification and properties of 4-hydr oxybenzoate 1-hydr oxylase(decarboxylating),a novel flavin adenine dinucleotidedependent monooxygenase from Candida parapsilosis CBS604.J Bacteriol,1997,179:6680-7
    [36]Arend J,Warzecha H,Hefner T,et al.Utilizing genetically engineered bacteria to produce plant-specific glucoside.Biotechnol Bioeng,2001,76:126-31
    [37]Shen X,Wang J,Wang J,et al.High-level de novo biosynthesis of arbutin in engineered Escherichia coli.Metab Eng,2017,42:52-8
    [38]Fang MY,Zhang C,Yang S,et al.High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway.Microb Cell Fact,2015,14:8
    [39]Ul-Haq I,Ali S.Microbiological transformation of L-tyrosine to 3,4-dihydroxyphenyl L-alanine(L-dopa)by a mutant strain of Aspergillus oryzae UV-7.Curr Microb,2002,45:88-93
    [40]Sprenger GA.From scratch to value:engineering Escherichia coli wild type cells to the production of l-phenylalanine and other fine chemicals derived from chorismate.Appl Microbiol Biotechnol,2007,75:739-49
    [41]Gosset G.Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system.Microb Cell Fact,2005,4:14
    [42]Lütke-Eversloh T,Stephanopoulos G.L-tyrosine production by deregulated strains of Escherichia coli.Appl Microbiol Biotechnol,2007,75:103-10
    [43]Santos C,Stephanopoulos G.Melanin-based highthroughput screen for L-tyrosine production in Escherichia coli.Appl Environ Microb,2008,74:1190-7
    [44]Chávez-Béjar MI,Lara AR,López H,et al.Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis.Appl Environ Microb,2008,74:3284-90
    [45]Darmawi J,Baidoo EE,Redding-Johanson AM,et al.Modular engineering of L-tyrosine production in Escherichia coli.Appl Environ Microb,2012,78:89-98
    [46]Chen Y,Liu Y,Ding D,et al.Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production.J Ind Microbiol Biot,2018,45:357-67
    [47]Chen L,Zeng AP.Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.Appl Microb Biotech,2017,101:559-68
    [48]Wang J,Cheng LK,Wang J,et al.Genetic engineering of Escherichia coli to enhance production of L-tryptophan.Appl Microbiol Biotechnol,2013,97:7587-96
    [49]Cheng LK,Wang J,Xu QY,et al.Effect of feeding strategy on L-tryptophan production by recombinant Escherichia coli.Ann Microbiol,2012,62:1625-34
    [50]Santos CN,Xiao W,Stephanopoulos G.Rational,combinatorial,and genomic approaches for engineering L-tyrosine production in Escherichia coli.Proc Natl Acad Sci USA,2012,109:13538-43
    [51]Liu Y,Xu Y,Ding D,et al.Genetic engineering of Escherichia coli to improve L-phenylalanine production.BMC Biotechnol,2018,18:5
    [52]Liu X,Lin J,Hu H,et al.A systems level engineered E.coli capable of efficiently producing L-phenylalanine.Process Biochem,2014,49:751-7
    [53]Backman K,O'Connor MJ,Maruya A,et al.Genetic engineering of metabolic pathways applied to the production of phenylalanine.Ann NY Acad Sci,1990,589:16-24
    [54]Zhou H,Liao X,Wang T,et al.Enhanced l-phenylalanine biosynthesis by co-expression of pheAfbr and aroFwt.Bioresource Technol,2010,101:4151-6
    [55]Azuma S,Tsunekawa H,Okabe M,et al.Hyperproduction of L-trytophan via fermentation with crystallization.Appl Microb Biotechnol,1993,39:471-6
    [56]Zhao ZJ,Zou C,Zhu YX,et al.Development of L-tryptophan production strains by defined genetic modification in Escherichia coli.J Ind Microbiol Biot,2011,38:1921-9
    [57]Verónica HM,Alfredo M,Georgina HC,et al.Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products.Biotechnol Bioeng,2010,83:687-94
    [58]付月,薛永常.木质素生物合成及其基因调控研究进展.安徽农业科学,2006,34:1766-7
    [59]路瑶,魏贤勇,宗志敏,等.木质素的结构研究与应用.化学进展,2013,25:838-58
    [60]Huang X,Dai Y,Cai J,et al.Resveratrol encapsulation in core-shell biopolymer nanoparticles:impact on antioxidant and anticancer activities.Food Hydrocolloids,2016,64:175-65
    [61]Giuseppe C,Brigida DA,Antonio F,et al.Isolation,characterization,and antioxidant activity of E-and Z-pcoumaryl fatty acid esters from cv.Annurca apple fruits.JAgr Food Chem,2005,53:3525-9
    [62]Yu ES,Min HJ,Lee K,et al.Anti-inflammatory activity of p-coumaryl alcohol-γ-O-methyl ether is mediated through modulation of interferon-γproduction in Th cells.Brit JPharmacol,2009,156:1107-14
    [63]Jansen F,Gillessen B,Mueller F,et al.Metabolic engineering for p-coumaryl alcohol production in Escherichia coli by introducing an artificial phenylpropanoid pathway.Biotechnol Appl Biochem,2015,61:646-54
    [64]Summeren-Wesenhagen PV,Voges R,Dennig A,et al.Combinatorial optimization of synthetic operons for the microbial production of p-coumaryl alcohol with Escherichia coli.Microb Cell Fact,2015,14:79
    [65]Shivange AV,Marienhagen J,Mundhada H,et al.Advances in generating functional diversity for directed protein evolution.Curr Opin Chem Biol,2009,13:19-25
    [66]Chen Z,Sun X,Li Y,et al.Metabolic engineering of Escherichia coli for microbial synthesis of monolignols.Metab Eng,2016,39:102-9
    [67]Lim CG,Fowler ZL,Hueller T,et al.High-yield resveratrol production in engineered Escherichia coli.Appl Environ Microb,2011,77:3451-60
    [68]Wu J,Zhou P,Zhang X,et al.Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine.J Biotechnol,2013,167:404-11
    [69]Liu X,Lin J,Hu H,et al.De novo biosynthesis of resveratrol by site-specific integration of heterologous genes in Escherichia coli.FEMS Microb Lett,2016,363:fnw061
    [70]Wu J,Zhou P,Zhang X,et al.Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli.J Ind Microb Biotech,2017,44:1083-95
    [71]Li M,Kildegaard KR,Chen Y,et al.De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.Metab Eng,2015,32:1-11
    [72]Morita H,Stroud RM.A structure-based mechanism for benzalacetone synthase from Rheum palmatum.Proc Natl Acad Sci USA,2010,107:669-73
    [73]Zorn H,Fischer-Zorn M,Berger RG.A labeling study to elucidate the biosynthesis of 4-(4-hydroxyphenyl)-butan-2-one(raspberry ketone)by Nidula niveo-tomentosa.Appl Environ Microbiol,2003,69:367-72
    [74]Beekwilder J,van der Meer IM,Sibbesen O,et al.Microbial production of natural raspberry ketone.Biotechnol J,2007,2:1270-9
    [75]Lee D,Lloyd ND,Pretorius IS,et al.Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion.Micro Cell Fact,2016,15:49
    [76]Liu X,Cheng J,Zhang G,et al.Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches.Nat Commun,2018,9:448
    [77]Zhao Q,Cui MY,Levsh O,et al.Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4'-deoxyflavones in Scutellaria baicalensis.Mol Plant,2018,11:135-48
    [78]Li J,Tian C,Xia Y,et al.Production of plant-specific flavones baicalein and scutellarein in an engineered E.coli from available phenylalanine and tyrosine.Metab Eng,2019,52:124-33
    [79]Zhu S,Wu J,Du G,,et al.Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli.Appl Environ Microbiol,2014,80:3072-80
    [80]Birdsall TC.5-Hydroxytryptophan:a clinically-effective serotonin precursor.Altern Med Rev,1998,3:271-80
    [81]Ziegler J,Facchini PJ.Alkaloid biosynthesis:metabolism and trafficking.Annu Rev Plant Biol,2008,59:735-69
    [82]McKinney J,Knappskog PM,Pereira J,et al.Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris.Protein Expr Purif,2004,33:185-94
    [83]Kowlessur D,Kaufman S.Cloning and expression of recombinant human pineal tryptophan hydroxylase in Escherichia coli:purification and characterization of the cloned enzyme.Biochim Biophys Acta,1999,1434:317-30
    [84]Knight EM,Zhu J,Fo?rster J,et al.Microorganisms for the production of 5-hydroxytryptophan[P].2013,Patent No.WO2013127914
    [85]Nakata H,Yamauchi T,Fujisawa H,et al.Phenylalanine hydroxylase from Chromobacterium violaceum.Purification and characterization.J Biol Chem,1979,254:1829-33
    [86]Zhao G,Xia T,Song J,et al.Pseudomonas aeruginosa possesses homologues of mammalian phenylalanine hydroxylase and 4 alpha-carbinolamine dehydratase/DCoH as part of a three-component gene cluster.Proc Natl Acad Sci USA,1994,91:1366-70
    [87]Lin Y,Sun X,Yuan Q,et al.Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan.ACS Syn Biol,2014,3:497-505
    [88]Park M,Kang K,Park S,et al.Conversion of 5-hydroxytryptophan into serotonin by tryptophan decarboxylase in plants,Escherichia coli,and yeast.Biosci Biotechnol Biochem,2008,72:2456-8
    [89]Mora-Villalobos JA,Zeng AP.Synthetic pathways and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli.J Biol Eng,2018,12:3
    [90]Wang HJ,Liu WQ,Shi F,et al.Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli.Metab Eng,2018,48:279-87
    [91]Fossati E,Ekins A,Narcross L,et al.Reconstitution of a10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae.Nat Commun,2014,5:3283
    [92]Hawkins K,Smolke C.Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae.Nat Chem Biol,2008,4:564-73
    [93]Galanie S,Thodey K,Trenchard IJ,et al.Complete biosynthesis of opioids in yeast.Science,2015,349:1095-100
    [94]Trenchard IJ,Siddiqui MS,Thodey K,et al.De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast.Metab Eng,2015,31:74-83
    [95]Li Y,Li S,Thodey K,et al.Complete biosynthesis of noscapine and halogenated alkaloids in yeast.Proc Natl Acad Sci USA,2018,115:3922-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700