随机温度信号互相关法测量吸热型碳氢燃料密度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Density measurements of endothermic hydrocarbon fuel using random temperature signal cross-correlation
  • 作者:耿宸 ; 郭亚军 ; 冯松 ; 毕勤成
  • 英文作者:GENG Chen;GUO Yajun;FENG Song;BI Qincheng;School of Environmental and Municipal Engineering, Xi'an University of Architecture &Technology;State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University;
  • 关键词:碳氢化合物 ; 超临界流体 ; 互相关法 ; 密度 ; 测量
  • 英文关键词:hydrocarbons;;supercritical fluid;;cross-correlation;;density;;measurement
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:西安建筑科技大学环境与市政工程学院;西安交通大学动力工程多相流国家重点实验室;
  • 出版日期:2018-10-29 10:43
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51776167)
  • 语种:中文;
  • 页:HGSZ201901003
  • 页数:8
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:34-41
摘要
为实现超临界压力下吸热型碳氢燃料密度的准确测量,以相关测量技术为基础,设计搭建了一套密度在线测量系统。该系统在间距148 mm的管道上下游安装两只具有相同热电特性的K型热电偶作为互相关法的传感器,通过对热电偶检测到的随机温度信号进行相关计算,得出该信号经过上下游热电偶的延迟时间,计算得到流体截面的平均流速,在已知质量流量后,根据质量守恒定律进而求得流体密度。采用纯物质十二烷及质量比1∶1正辛烷/正庚烷二元混合物标定测量系统精度,实验结果与文献值的最大误差在±1.2%以内,平均相对误差小于0.6%。在此基础上,对压力p=3.0、4.0、5.0 MPa,温度T=302.0~529.6 K,吸热型碳氢燃料密度进行测量,该方法的应用为超临界压力下吸热型碳氢燃料密度的准确测量提供了新思路。
        To measure the density of a new endothermic hydrocarbon fuel(EHF) at supercritical pressures, a new densimeter, which is based on the mass conservation equation and cross-correlation method, was designed and constructed. Two K-type thermocouples with the same thermoelectric characteristics were installed in the up streamand downstream of the test tube with distance of 148 mm as the cross-correlation sensor. The delay time was foundusing the cross-correlation between upstream and downstream signal which were measured by the thermocouples.High sampling rate and correlation coefficient were used to ensure the accuracy and similarity of the signals. So themean flow velocity could be calculated by the delay time and distance. With the flow velocity and mass flow rateknown, the density could be determined based on the mass conservation equation. The n-dodecane and the binarymixture of n-octane and n-heptane with mass ratio of 1∶1 were tested for the system calibration. According toerror analysis, the maximum relative deviations were below ± 1.2%, and the absolute average relative deviationswere within 0.6%. On the basis of calibration experiments, this measurement covers the temperature range of 302.0—529.6 K under pressures from 3.0 MPa to 5.0 MPa. The application of this method provides a new thinking of the density on-line measurement of endothermic hydrocarbon fuel under supercritical pressures.
引文
[1] Hou L Y, Dong N, Sun D P. Heat tansfer and thermal cracking behavior of hydrocarbon fuel[J]. Fuel, 2013, 103(1):1132-1137.
    [2] Fry R S. A century of ramjet propulsion technology evolution[J].Journal of Propulsion and Power, 2004, 20(1):27-58.
    [3]赵祖亮.吸热型碳氢燃料结焦与超临界压力下传热性质研究[D].杭州:浙江大学, 2006.Zhao Z L. Study on the heat transfer properties of heat absorbing hydrocarbon fuel coking under supercritical pressure[D].Hangzhou:Zhejiang University, 2006.
    [4] Jani?M. Greening commercial air transportation by using liquid hydrogen(LH2)as a fuel[J]. International Journal of Hydrogen Energy, 2014, 39(29):16426-16441.
    [5] Stroman R O, Schuette M W, Swider L K, et al. Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle[J]. International Journal of Hydrogen Energy, 2014, 39(21):11279-11290.
    [6] Zhong F Q, Fan X J, Yu G, et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3):543-550.
    [7]李勋锋,仲峰泉,范学军,等.超临界压力下航空煤油圆管流动和传热的数值研究[J].推进技术, 2010, 31(4):467-472.Li X F, Zhong F Q, Fan X J, et al. Numerical study on flow and heat transfer of round tubes of aviation kerosene under supercritical pressure[J]. Propulsion Technology, 2010, 31(4):467-472.
    [8] Pioro I, Mokry S. Heat Transfer Theoretical Analysis,Experimental Investigations and Industrial Systems[M]//Rijeka,Croatia:InTech, 2011:574-591.
    [9] Xu G Q, Jia Z X, Wen J, et al. Thermal-conductivity measurements of aviation kerosene RP-3 from(285 to 513)K at sub-and supercritical pressures[J]. International Journal of Thermophysics, 2015, 36(4):620-632.
    [10] Tanaka K, Higashi Y. Measurements of the isobaric specific heat capacity and density for dimethyl ether in the liquid state[J].Journal of Chemical&Engineering Data, 2010, 55(8):2658-2661.
    [11] Rasa H. Measurements and calculations of hydrocarbon mixtures liquid density by simple cubic equations of state[J]. Physics&Chemistry of Liquids, 2009, 47(2):140-147.
    [12] Wen J, Zhang N, Fu Y, et al. Density measurements of propellant EHF-TU at(3 to 7)MPa supercritical pressures[J]. Journal of Chemical&Engineering Data, 2018, 63(6):1961-1968.
    [13] Edwards T. Cracking and deposition behavior of supercritical hydrocarbon aviation fuel[J]. Combustion Science and Technology,2006, 178(1/2/3):307-334.
    [14] Jiang R P, Liu G Z, Zhang X W. Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J]. Energy and Fuels, 2013, 27(5):2563-2577.
    [15] Zhang C B, Xu G Q, Gao L, et al. Experimental investigation on heat transfer of a specific fuel(RP-3)flows through downward tubes at supercritical pressure[J]. Journal of Supercritical Fluids,2012, 72(9):90-99.
    [16] Fandi?O O, Comu?As M J P, Lugo L, et al. Density measurements under pressure for mixtures of pentaerythritol ester lubricants.Analysis of a density viscosity relationship[J]. Journal of Chemical and Engineering Data, 2007, 52(4):1429-1436.
    [17] Lei Y T, Chen Z Y, An X Q, et al. Measurements of density and heat capacity for binary mixtures x benzonitrile+(1-x)(octane or nonane)[J]. Journal of Chemical and Engineering Data, 2010, 55(10):4154-4161
    [18] Fedele L, Pernechele F, Bobbo S, et al. Compressed liquid density measurements for 1, 1, 1, 2, 3, 3, 3-heptafluoropropane(R227ea)[J]. Journal of Chemical and Engineering Data, 2007, 52(5):1955-1959.
    [19] Nikitin E D, Pavlov P A, Skripov P V. Measurement of the critical properties of thermally unstable substances and mixtures by the pulse-heating method[J]. Journal of Chemical Thermodynamics,1993, 25(7):869-880.
    [20] Liu F Y, Xie D Y, Yu M H. Formulae for density and water content of specimen in the triaxial test using two types ofγ-ray[J].Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4):569-572.
    [21] Guan X D, Chen G. The measurement of soil moisture and density research and application design using the principle of dualenergyε-rays transmission[J]. International Conference on Electric Information and Control Engineering, 2011, 45(11):21-26.
    [22] Yang Z, Bi Q, Yong G, et al. Design of a gamma densitometer for hydrocarbon fuel at high temperature and supercritical pressure[J]. Journal of Chemical&Engineering Data, 2014, 59(11):3335-3343.
    [23] Deng H W, Zhang C B, XüG Q, et al. Density measurements endothermic hydrocarbon fuel at sub-and super-critical conditions[J]. Journal of Chemical and Engineering Data, 2011, 56(6):2980-2986.
    [24]徐苓安.相关流量测量技术[M].天津:天津大学出版社, 1988:217-227.Xu L A, Related Flow Measurement Technology[M]. Tianjin:Tianjin University Press, 1988:217-227.
    [25]薛倩,王化祥,马敏,等.基于改进互相关法的气固两相栓塞流速测量[J].化工学报, 2014, 65(10):3820-3828.Xue Q, Wang H X, Ma M, et al. Flow velocity measurement of gas-solid two-phase embolization based on improved cross correlation method[J]. Journal of chemical engineering, 2014, 65(10):3820-3828.
    [26]张绍志,蒋青,白崇俨,等.基于温度互相关法流量测量实验[J].化工学报, 2014, 65(S2):124-128.Zhang S Z, Jiang Q, Bai C Y, et al. Flow measurement experiments based on temperature cross correlation method[J].Journal of chemical engineering, 2014, 65(S2):124-128.
    [27] Jin B T, Jing K, Liu J, et al. Pyrolysis and coking of endothermic hydrocarbon fuel in regenerative cooling channel under different pressures[J]. Journal of Analytical and Applied Pyrolysis, 2017,125:384-395.
    [28] Lemmon E W, Huber M L. Thermodynamic properties of ndodecane[J]. Energy and Fuels, 2004, 18(4):960-967.
    [29] Kunz O, Wagner W. The GERG-2004 wide-range equation of state of natural gases and other mixtures[J]. Journal of Chemical&Engineering Data, 2007, 57(11):3032-3091.
    [30] Kunz O, Wagner W. The GERG-2008 wide-range equation of state for natural gases and other mixtures:an expansion of GERG-2004[J]. Journal of Chemical&Engineering Data, 2012, 57(11):3032-3091.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700