超临界碳氢燃料的射流特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on Jet Characteristics of Supercritical Hydrocarbon Fuel
  • 作者:彭云晖 ; 高伟 ; 张弛 ; 林宇震
  • 英文作者:PENG Yun-hui;GAO Wei;ZHANG Chi;LIN Yu-zhen;Nanjing Research Institute of Simulation Technology;School of Energy and Power Engineering,Beihang University;Collaborative Innovation Center for Advanced Aero-Engine;
  • 关键词:超临界 ; 碳氢燃料 ; 射流特性 ; 流量特性 ; 航空发动机
  • 英文关键词:supercritical;;hydrocarbon fuel;;jet characteristics;;mass flow rate characteristics;;aeroengine
  • 中文刊名:HKFJ
  • 英文刊名:Aeroengine
  • 机构:南京模拟技术研究所;北京航空航天大学能源与动力工程学院;先进航空发动机协同创新中心;
  • 出版日期:2019-04-15
  • 出版单位:航空发动机
  • 年:2019
  • 期:v.45;No.196
  • 语种:中文;
  • 页:HKFJ201902012
  • 页数:6
  • CN:02
  • ISSN:21-1359/V
  • 分类号:63-68
摘要
针对未来先进航空发动机的超临界燃油喷射混合问题,采用纹影法对超临界正十烷(n-decane)/正戊烷(n-pent ane)混合物在静止环境中的射流激波结构进行试验,同时采用理论分析的方法研究了射流的相变途径和流量特性。纹影照片显示,在试验工况下射流在喷口附近呈现出马赫波等激波结构,燃料的压力是激波结构的主要影响因素。理论分析表明:在混合物的临界点附近,燃料压力较高时更有可能导致相变。由于物性的不同,大分子与小分子碳氢燃料的相变途径存在一定的差异,小分子燃料在喷射过程中更容易发生冷凝。采用1维等熵计算方法可以较精确地计算高温高压碳氢燃料的流量。
        The shock structures of supercritical n-decane/n-pentane mixtures into atmospheric environment was experimentally investigated by Schlieren method,and the phase transition path and mass flow rate characteristics of fuel jets were theoretically studied.Flow visualization showed that internal shock structures are observed near the nozzle exit for the test conditions and the fuel pressure has the primary influence on shock structures. Theoretical analysis revealed that fuel condensation phenomenon occurs more possibly at higher fuel pressures near the critical point and the condensation of small hydrocarbon fuel is more likely to occur than large hydrocarbon fuel because of the different thermodynamic properties. The mass flow rate of hydrocarbon fuel at high temperature and high pressure conditions can be calculated accurately using one-dimensional isentropic calculation method.
引文
[1] Edwards T. USAF supercritical hydrocarbon fuels interests[R]. AIAA-1993-0807.
    [2] Huang H,Spadaccini L J,Sobel D R. Fuel-cooled thermal management for advanced aeroengines[J]. Journal of Engineering for Gas Turbines and Power,2004,126(2):284-293.
    [3] Dang G X,Zhong F Q,Zhang Y J,et al. Numerical study of heat transfer deterioration of turbulent supercritical kerosene flow in heated circular tube[J]. International Journal of Heat and Mass Transfer,2015,85:1003-1011.
    [4]韩布兴.超临界流体科学与技术[M].北京:化学工业出版社,2005:30-35.HAN Buxing. Supercritical fluid science and technology[M]. Beijing:Chemical Industry Press,2005:30-35.(in Chinese)
    [5] Yang V. Modeling of supercritical vaporization,mixing and combustion processes in liquid-fueled propulsion system[J]. Proceeding of the Combustion Institute,2000,28(1):925-942.
    [6] Bellan J. Supercritical(and subcritical)fluid behavior and modeling:drops,streams,shear and mixing layers,jets and sprays[J].Progress in Energy and Combustion Science,2000,26(4-6):329-366.
    [7] Edwards T,Maurice L Q. Surrogate mixtures to represent complex aviation and rocket fuels[J]. Journal of Propulsion and Power,2001,17(2):461-466.
    [8] Wu P K,Chen T H,Nejad A S,et al. Injection of supercritical ethylene in nitrogen[J]. Journal of Propulsion and Power,1996,12(4):770-777.
    [9] Wu P K,Shahnam M,Kirkendall K,et al. Expansion and mixing processes of underexpanded supercritical fuel jets injected into superheated conditions[R]. AIAA-1997-2852.
    [10] Lin K C,Stouffer S C,Jackson T A. Structures and phase transition processes of supercritical methane/ethylene mixtures injected into a subcritical environment[J]. Combustion Science and Technology,2006,178(1-3):129-160.
    [11] Star A M,Edwards J R,Lin K C,et al. Numerical simulation of injection of supercritical ethylene into nitrogen[J]. Journal of Propulsion and Power,2006,22(4):809-819.
    [12] Chen L D. Heat transfer,fouling,and combustion of supercritical fuels[R]. AFOSR-TR-94-0321.
    [13] Lamanna G,Stotz L,Weigand B,et al. Supercritical fluid injection:an experimental study[R]. Proceedings of the 7th European Symposium on Aerothermodynamics, Belgium:ESA,2011:ESA-SP-692.
    [14] Roy A,Joly C,Segal C. Disintegrating supercritical jets in a subcritical environment[J]. Journal of Fluid Mechanics,2013,717:193-202.
    [15]靳乐,范玮,范珍涔,等.超临界喷射受环境和喷射参数影响的数值研究[J].航空动力学报,2014,29(6):1323-1329.JIN Le,FAN Wei,FAN Zhencen,et al. Numerical investigation on effects of ambient and injection parameters on supercritical injection[J].Journal of Aerospace Power,2014,29(6):1323-1329.(in Chinese)
    [16] Doungthip T,Erivin J S,Williams T F,et al. Studies of injection of jet fuel at supercritical conditions[J]. Industrial and Engineering Chemistry Research,2002,41(23):5856-5866.
    [17]高伟,林宇震,付镇柏,等.超临界正十烷喷射到大气环境中的喷射特性[J].航空动力学报,2010,25(9):1984-1988.GAO Wei,LIN Yuzhen,FU Zhenbo,et al. Injection characteristics of supercritical n-decane into atmospheric environment[J]. Journal of Aerospace Power,2010,25(9):1984-1988.(in Chinese)
    [18] Xue X,Gao W,Xu Q H,et al. Injection of subcritical and supercritical aviation kerosene into a high temperature and high pressure crossflow[R]. ASME 2011-GT-45773.
    [19] Crist S,Sherman P M,Glass D R. Study of the highly underexpanded sonic jet[J]. AIAA Journal,1966,4(1):68-71.
    [20] Ely J F,Huber M L. NIST standard reference database 4-NIST thermophysical properties of hydrocarbon mixtures[M]. Gaithersburg,M D:National Institute of Standards,1990:1-43.
    [21]潘锦珊,单鹏,刘火星,等.气体动力学基础[M].北京:国防工业出版社,2012:168-170.PAN Jinshan,SHAN Peng,LIU Huoxing,et al. Fundamentals of gas dynamics[M].Beijing:National Defense Industry Press,2012:168-170.(in Chinese)
    [22] Star A M,Edwards J R,Lin K C,et al. Numerical simulation of injection of supercritical ethylene into nitrogen[J]. Journal of Propulsion and Power,2006,22(4):809-819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700