脂肪酸甲酯加氢脱氧和蒸汽裂解两步法制备生物烯烃
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Production of bio-olefins from fatty acid methyl esters via hydrodeoxygenation and sequential steam cracking
  • 作者:孙培永 ; 王海星 ; 周玉鹏 ; 张胜红 ; 姚志龙
  • 英文作者:SUN Peiyong;WANG Haixing;ZHOU Yupeng;ZHANG Shenghong;YAO Zhilong;Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of Chemical Engineering,Beijing Institute of Petrochemical Technology;
  • 关键词:脂肪酸甲酯 ; 加氢脱氧 ; 生物烷烃 ; 蒸汽裂解 ; 生物烯烃
  • 英文关键词:fatty acid methyl ester;;hydrodeoxygenation;;bio-paraffin;;steam cracking;;bio-olefin
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:北京石油化工学院化学工程学院恩泽生物质精细化工北京市重点实验室;
  • 出版日期:2018-01-16 09:49
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:国家自然科学基金项目(21703012);; 北京市教育委员会科技计划项目(KM 201610017003)~~
  • 语种:中文;
  • 页:HGSZ201806020
  • 页数:7
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:167-173
摘要
脂肪酸甲酯经生物烷烃制备轻质烯烃,有望缓解低原油价格导致的生物柴油产业发展困境。采用浸渍法制备了NiMo/Al_2O_3催化剂,首先考察其催化脂肪酸甲酯加氢脱氧制备生物烷烃的性能,然后进一步分析生物烷烃蒸汽裂解制烯烃的转化规律。结果表明,预硫化的NiMo/Al_2O_3能够高选择性地催化饱和脂肪酸甲酯加氢制备生物烷烃,并且催化剂的结构在反应1000 h后无明显改变。以上述烷烃为原料,在裂解炉出口温度为810℃,出口压力为0.10 MPa,物料停留时间为0.23 s和水油质量比为0.75的反应条件下进行蒸汽裂解,产物中乙烯、丙烯和丁二烯的收率分别达到36.30%、18.14%和7.46%,显著高于同等条件下石脑油原料得到的27.45%、14.74%和5.31%,表明源于脂肪酸甲酯的生物烷烃可以作为生产轻质烯烃的原料补充。
        Conversion of fatty acid methyl esters(FAMEs) to bio-paraffins and further to bio-olefins offers a potential solution to the emerging problems in the biodiesel industry due to the collapse of world oil prices. NiMo/Al_2O_3 catalyst prepared via an impregnation method was evaluated in the catalytic hydrodeoxygenation of FAMEs to bio-paraffins. The obtained paraffins were used as feedstocks to produce bio-olefins via steam cracking. The presulfided NiMo/Al_2O_3 converted the saturated FAMEs selectively to paraffins, without observable changes in the catalyst structure after reaction for 1000 h. Under the cracking conditions of coil-out temperature and pressure at 810℃ and 0.10 MPa, residence time at 0.23 s, and mass ratio of water to paraffins at 0.75, the yields of ethylene, propylene and butadiene were 36.30%, 18.14% and 7.46%, respectively. These data were much higher than the values of 27.45%, 14.74% and 5.31% obtained with naphtha as feedstocks under the similar conditions, indicating that bio-paraffins derived from FAMEs are alternative feedstocks for light olefins.
引文
[1]吴才武,夏建新.地沟油的危害及其应对方法[J].食品工业,2014,35(3):237-240.WU C W,XIA J X.Hazards and resolve methods of illegal cooking oil[J].Food Industry,2014,35(3):237-240.
    [2]张家仁,邓甜音,刘海超.油脂和木质纤维素催化转化制备生物液体燃料[J].化学进展,2013,25(2/3):192-208.ZHANG J R,DENG T Y,LIU H C.Catalytic production of liquid biofuels from triglyceride feedstocks and lignocellulose[J].Progress in Chemistry,2013,25(2/3):192-208.
    [3]YAAKOB Z,MOHAMMAD M,ALHERBAWI M,et al.Overview of the production of biodiesel from waste cooking oil[J].Renewable and Sustainable Energy Reviews,2013,18:184-193.
    [4]ISSARIYAKUL T,DALAI A K.Biodiesel from vegetable oils[J].Renewable&Sustainable Energy Reviews,2014,31:446-471.
    [5]李顶杰,朱建军.生物柴油产业的发展现状与对策建议[J].中国石油和化工经济分析,2016,9:39-42.LI D J,ZHU J J.Developing status and corresponding countermeasures for biodiesel industry in China[J].Economic Analysis of China Petroleum and Chemical Industry,2016,9:39-42.
    [6]MAHER K D,BRESSLER D C.Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals[J].Bioresource Technology,2007,98(12):2351-2368.
    [7]罗俊,邵敬爱,杨海平,等.生物质催化热解制备低碳烯烃的研究进展[J].化工进展,2017,36(5):1555-1564.LUO J,SHAO J A,YANG H P,et al.Research progresses on production of light olefins from catalytic pyrolysis of biomass[J].Chemical Industry and Engineering Progress,2017,36(5):1555-1564.
    [8]李振宇,王红秋,黄格省,等.我国乙烯生产工艺现状与发展趋势分析[J].化工进展,2017,36(3):767-773.LI Z Y,WANG H Q,HUANG G S,et al.Analysis on status and development trend of ethylene production technology in China[J].Chemical Industry and Engineering Progress,2017,36(3):767-773.
    [9]IDEM R O,KATITANENI S P R,BAKHSHI N N.Thermal cracking of canola oil:?reaction products in the presence and absence of steam[J].Energy&Fuels,1996,10(6):1150-1162.
    [10]SADRAMELI S M,GREEN A E S.Systematics of renewable olefins from thermal cracking of canola oil[J].Journal of Analytical and Applied Pyrolysis,2007,78(2):445-451.
    [11]ZáMOSTNYP,BěLOHLAV Z,?MIDRKAL J.Production of olefins via steam cracking of vegetable oils[J].Resources,Conservation and Recycling,2015,59:47-51.
    [12]DE BRUYCKER R,PYL S P,MARIE-FRANCOISE R,et al.Microkinetic model for the pyrolysis of methyl esters:from model compound to industrial biodiesel[J].AICh E Journal,2015,61(12):4309-4322.
    [13]臧俊娜.植物油蒸汽裂解转化规律的研究[D].山东:中国石油大学(华东),2010.ZANG J N.Studies on the conversion rule of vegetable oil by steam cracking[D].Shandong:China University of Petroleum,2010.
    [14]韩蕾.废弃油脂蒸汽裂解转化规律研究[D].山东:中国石油大学(华东),2013.HAN L.Studies on the conversion rule of waste oil by steam cracking[D].Shandong:China University of Petroleum,2013.
    [15]KATIKANENI S P R,ADJAYE J D,BAKHSHI N N.Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts[J].The Canadian Journal of Chemical Engineering,1995,73(4):484-497.
    [16]KATIKANENI S P R,ADJAYE J D,BAKHSHI N N.Studies on the catalytic conversion of canola oil to hydrocarbons:influence of hybrid catalysts and steam[J].Energy&Fuels,1995,9(4):599-609.
    [17]KATIKANENI S P R,ADJAYE J D,IDEM R O,et al.Catalytic conversion of canola oil over potassium-impregnated HZSM-5catalysts:?C2—C4 olefin production and model reaction studies[J].Industrial&Engineering Chemistry Research,1996,35(10):3332-3346.
    [18]VU H X,SCHNEIDER M,BENTRUP U,et al.Hierarchical ZSM-5materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass[J].Industrial&Engineering Chemistry Research,2015,54(6):1773-1782.
    [19]蔡文静,闫昊,冯翔,等.不同碳链长度脂肪酸甲酯的催化裂化产物分布规律[J].化工学报,2017,68(5):2057-2065.CAI W J,YAN H,FENG X,et al.Product distribution in catalytic cracking of fatty acid methyl esters with different carbon chain lengths[J].CIESC Journal,2017,68(5):2057-2065.
    [20]BOTAS J A,SERRANO D P,GARCIA A,et al.Catalytic conversion of rapeseed oil for the production of raw chemicals,fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5[J].Applied Catalysis B:Environmental,2014,145:205-215.
    [21]BOTAS J A,SERRANO D P,GARCIA A,et al.Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni-and Mo-modified nanocrystalline ZSM-5 zeolite[J].Catalysis Today,2012,195(1):59-70.
    [22]CHEN L G,LI H W,FU J Y,et al.Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst[J].Catalysis Today,2016,259:266-276.
    [23]KIJKMANS T,PYL S P,REYNIERS M F,et al.Production of bio-ethene and propene:alternatives for bulk chemicals and polymers[J].Green Chemistry,2013,15(11):3064-3076.
    [24]孙培永,李梦晨,刘森,等.油酸甲酯催化加氢制备生物烷烃的热力学分析[J].化工学报,2017,68(6):2258-2265.SUN P Y,LI M C,LIU S,et al.Thermodynamic analysis of catalytic hydrogenation of methyl oleate to produce bio-paraffins[J].CIESC Journal,2017,68(6):2258-2265.
    [25]SMEJKAL Q,SMEJKALOVA L,KUBICKA D.Thermodynamic balance in reaction system of total vegetable oil hydrogenation[J].Chemical Engineering Journal,2009,146(1):155-160.
    [26]GOSSELINK R W,HOLLAK S A W,CHANG S W,et al.Reaction pathways for the deoxygenation of vegetable oils and related model compounds[J].Chem Sus Chem,2013,6(9):1576-1594.
    [27]HERMIDA L,ABDULLAH A Z,MOHAMED A R.Deoxygenation of fatty acid to produce diesel-like hydrocarbons:a review of process conditions,reaction kinetics and mechanism[J].Renewable&Sustainable Energy Reviews,2015,42:1223-1233.
    [28]KUBICKA D,HORACEK J.Deactivation of HDS catalysts in deoxygenation of vegetable oils[J].Applied Catalysis A:General,2011,394(1/2):9-17.
    [29]孙培永,刘森,周玉鹏,等.镍铝合金催化油酸甲酯加氢饱和的热力学和动力学分析[J].中国油脂,2017,42(10):93-99.SUN P Y,LIU S,ZHOU Y P,et al.Thermodynamic and kinetics analysis of catalytic hydrogenation of methyl oleate over Ni-Al alloy[J].China Oils and Fats,2017,42(10):93-99.
    [30]刘纪昌,沈本贤.正构烷烃含量对裂解烯烃收率的影响及乙烯裂解的原料调配[J].华东理工大学学报(自然科学版),2006,32(5):535-539.LIU J C,SHEN B X.Effect of normal paraffin content on ethylene yield and feedstock allocation of ethylene pyrolysis process[J].Journal of East China University of Science and Technology(Natural Science),2006,32(5):535-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700