淀粉对微生物的结合作用及应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advances in the Binding Mechanism of Starch to Microorganisms and Its Applications
  • 作者:赵国华 ; 张蕴玉 ; 雷琳 ; 叶发银
  • 英文作者:Zhao Guohua;Zhang Yunyu;Lei Lin;Ye Fayin;College of Food Science, Southwest University;Chongqing Sweet Potato Engineering and Technology Research Center;
  • 关键词:淀粉 ; 微生物粘附 ; 机制 ; 应用 ; 益生菌载体
  • 英文关键词:starch;;microbial adhesion;;mechanism;;application;;carriers for probiotics
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:西南大学食品科学学院;重庆市甘薯工程技术研究中心;
  • 出版日期:2019-03-31
  • 出版单位:中国食品学报
  • 年:2019
  • 期:v.19
  • 基金:国家自然科学基金项目(31601401);; 中央高校基本业务费专项资金(XDJK2019C048,XDJK-2019B027);; 重庆市社会事业与民生保障科技创新专项(cstc2015shms-ztzx80006)
  • 语种:中文;
  • 页:ZGSP201903002
  • 页数:12
  • CN:03
  • ISSN:11-4528/TS
  • 分类号:7-18
摘要
近年来,微生物与食品成分或基质相互作用及其对食品质量安全和营养品质影响的研究日益深入。现已发现一些食品成分对食品致病菌具有抗黏附效应,相关研究对食源性疾病预防大有裨益。有趣的是,一些食品成分(包括多糖、蛋白质等)对有益微生物(如乳酸菌、双歧杆菌等)产生特异性结合作用,这一机制在酸浆法生产淀粉和益生菌包埋载体构建等方面得到广泛应用。本文全面阐述了微生物对淀粉颗粒粘附的现象、有关规律和机制,并总结其在食品工业中的应用,提出需要进一步研究的问题与发展建议,以期为微生物与食品淀粉相互作用研究和应用提供参考。
        In recent years, the interaction between microorganisms and food ingredients or substrates and their effects on food quality safety and nutritional quality have become increasing studied. Some food ingredients have been found to have anti-adhesion effects on food pathogens, and related research is of great benefit to the prevention of foodborne diseases. Interestingly, some food ingredients(including polysaccharides, proteins, etc.) have specific binding effects on beneficial microorganisms(such as lactic acid bacteria, Bifidobacterium, etc.). This mechanism has been widely used in the isolation of starch by sour liquid processing and the construction of carriers for probiotic embedding. In this paper, the phenomena, rules and mechanisms of microbial adherence to starch granules were comprehensively expounded, and their applications in food industry were summarized. The problems worthy of further study and development suggestions were put forward in order to provide references for the research and application of microbial-starch interaction.
引文
[1]KARASU E N, ERMIS E. Determination of the effect of exopolysaccharide(EPS)from Lactobacillus brevis E25 on adhesion of food powders on the surfaces, using the centrifuge technique[J]. Journal of Food Engineering, 2019, 242:106-114.
    [2]GUERIN J, BURGAIN J, FRANCIUS G, et al.Adhesion of Lactobacillus rhamnosus GG surface biomolecules to milk proteins[J]. Food Hydrocolloids,2018, 82:296-303.
    [3]KREGIEL D. Advances in biofilm control for food and beverage industry using organo-silane technology:A review[J]. Food Control, 2014, 40:32-40.
    [4]SUN X, WU J. Food derived anti-adhesive components against bacterial adhesion:Current progresses and future perspectives[J]. Trends in Food Science&Technology, 2017, 69:148-156.
    [5]GOMAND F, BORGES F, SALIM D, et al. Highthroughput screening approach to evaluate the adhesive properties of bacteria to milk biomolecules[J].Food Hydrocolloids, 2018, 84:537-544.
    [6]BURGAIN J, SCHER J, LEBEER S, et al. Impacts of pH-mediated EPS structure on probiotic bacterial pili-whey proteins interactions[J]. Colloids and Surfaces B:Biointerfaces, 2015, 134:332-338.
    [7]MONTORO B P, BENOMAR N, GóMEZ N C, et al. Proteomic analysis of Lactobacillus pentosus for the identification of potential markers of adhesion and other probiotic features[J]. Food Research International, 2018, 111:58-66.
    [8]SALCEDO J, BARBERA R, MATENCIO E, et al.Gangliosides and sialic acid effects upon newborn pathogenic bacteria adhesion:an in vitro study[J].Food Chemistry, 2013, 136(2):726-734.
    [9]YU C, LEE A M, BASSLER B L, et al. Chitin utilization by marine bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates[J]. Journal of Biological Chemistry, 1991, 266(36):24260-24267.
    [10]WANG X, BROWN I L, EVANS A J, et al. The protective effects of high amylose maize(amylomaize)starch granules on the survival of Bifidobacterium spp. in the mouse intestinal tract[J]. Journal of Applied Microbiology, 1999, 87(5):631-639.
    [11]O'RIORDAN K, MULJADI N, CONWAY P. Characterization of factors affecting attachment of Bifidobacterium species to amylomaize starch granules[J].Journal of Applied Microbiology, 2001, 90(5):749-754.
    [12]BENAVENT-GIL Y, RODRIGO D, ROSELL C M.Thermal stabilization of probiotics by adsorption onto porous starches[J]. Carbohydrate Polymers, 2018,197:558-564.
    [13]北京粉丝厂北大生物系酸浆研究小组.酸浆为什么能沉淀淀粉[J].北京大学学报(自然社会版), 1974(S1):60-69.
    [14]张莉力,许云贺,李新华.对甘薯淀粉具有絮凝活性的乳酸菌的分离鉴定及其特性研究[J].食品科学,2010, 31(7):228-231.
    [15]AMPE F, SIRVENT A, ZAKHIA N. Dynamics of the microbial community responsible for traditional sour cassava starch fermentation studied by denaturing gradient gel electrophoresis and quantitative rRNA hybridization[J]. International Journal of Food Microbiology, 2001, 65(1/2):45-54.
    [16]SALEM G, HASSAN Z, ABUBAKR M. Adhesion of probiotic bacteria to resistant rice starch[J]. American Journal of Applied Sciences, 2013, 10(4):313-321.
    [17]CRITTENDEN R, LAITILA A, FORSSELL P, et al. Adhesion of Bifidobacteria to granular starch and its implications in probiotic technologies[J]. Applied and Environmental Microbiology, 2001, 67(8):3469-3475.
    [18]刘黎莹,许云贺,叶青,等.绿豆酸浆中淀粉絮凝菌的分离鉴定及其生长特性[J].食品工业科技,2018, 39(8):85-89.
    [19]张莉力,许云贺,李新华.自然发酵甘薯酸浆中乳酸菌的筛选与鉴定[J].安徽农业科学, 2009, 37(1):9-10.
    [20]江萍,秦礼康.马铃薯淀粉凝集菌的研究[J].山地农业生物学报, 1997, 16(1):62-66.
    [21]LAHTINEN S J, OUWEHAND A C, SALMINEN S J, et al. Effect of starch‐and lipid‐based encapsulation on the culturability of two Bifidobacterium longum strains[J]. Letters in Applied Microbiology,2007, 44(5):500-505.
    [22]IMAM S H, HARRY-O'KURU R E. Adhesion of Lactobacillus amylovorus to insoluble and derivatized cornstarch granules[J]. Applied and Environmental Mircobiology, 1991, 57(4):1128-1133.
    [23]GANCZ H, NIDERMAN-MEYER O, BROZA M,et al. Adhesion of Vibrio cholerae to granular starches[J]. Applied and Environmental Mircobiology,2005, 71(8):4850-4855.
    [24]吴企禾.自然发酵甘薯酸浆细菌动态规律解析及乳酸菌絮凝性研究[D].沈阳:沈阳农业大学, 2017.
    [25]李新华,赵晓阳,张荔力.副干酪乳杆菌对甘薯浆液中淀粉絮凝机理研究[J].食品科学, 2010, 31(19):237-276.
    [26]魏凤鸣,迟玉森,赵福江.提高龙口粉丝生产中淀粉收率的研究[J].食品科学, 1987, 8(8):34-63.
    [27]郑玮,沈群.化学处理对酸浆中一株淀粉凝集菌和乳酸乳球菌As1.9沉淀淀粉能力的影响[J].食品工业科技, 2007, 28(10):123-126.
    [28]ZOCCO M A, AINORA M E, GASBARRINI G, et al. Bacteroides thetaiotaomicron in the gut:molecular aspects of their interaction[J]. Digestive and Liver Disease, 2007, 39(8):707-712.
    [29]ANDERSON K L, SALYERS A A. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes[J].Journal of Bacteriology, 1989, 171(6):3192-3198.
    [30]ANDERSON K L, SALYERS A A. Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron[J]. Journal of Bacteriology, 1989, 171(6):3199-3204.
    [31]TANCULA E, FELDHAUS M J, BEDZYK L A, et al. Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicron[J]. Journal of Bacteriology, 1992,174(17):5609-5616.
    [32]SHIPMAN J A, CHO K H, SIEGEL H A, et al.Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron[J]. Journal of Bacteriology, 1999, 181(23):7206-7211.
    [33]REEVES A R, D′ELIA J N, FRIAS J, et al. A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch[J]. Journal of Bacteriology, 1996,178(3):823-830.
    [34]REEVES A R, WANG G R, SALYERS A A.Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron[J]. Journal of Bacteriology, 1997,179(3):643-649.
    [35]SHIPMAN J A, BERLEMAN J E, SALYERS A A.Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron[J]. Journal of Bacteriology,2000, 182(19):5365-5372.
    [36]CHO K H, SALYERS A A. Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron[J]. Journal of Bacteriology, 2001, 183(24):7224-7230.
    [37]曹宗巽,卢光莹,宋云,等.乳酸链球菌凝集淀粉粒机理的进一步研究[J].微生物学报, 1980, 20(3):271-275.
    [38]张硕.副干酪乳杆菌絮凝活性成分的确定、提取及絮凝条件的研究[D].锦州:辽宁医学院, 2014.
    [39]李明珠.絮凝活性微生物的筛选、鉴定及活性部位的研究[D].锦州:辽宁医学院, 2012.
    [40]NIDERMAN-MEYER O, ZEIDMAN T, SHIMONI E, et al. Mechanisms involved in governing adherence of Vibrio cholerae to granular starch[J]. Applied and Environmental Mircobiology, 2010, 76(4):1034-1043.
    [41]ZHANG L, YU Y, LI X, et al. Starch flocculation by the sweet potato sour liquid is mediated by the adhesion of lactic acid bacteria to starch[J]. Frontiers in Microbiology, 2017, 8:1412.
    [42]杜连起,刘绍军,林学岷,等.酸浆作用菌对甘薯淀粉沉淀效果的研究[J].现代商贸工业, 1999,12(8):39-41.
    [43]汪龙飞,沈群.海藻酸钠凝胶包埋乳酸乳球菌沉淀绿豆淀粉的研究[J].食品科学, 2007, 28(1):147-150.
    [44]顾英,张明,张莉力.不同条件下副干酪乳杆菌L1絮凝甘薯淀粉的研究及酸浆的自然发酵[J].饲料研究, 2015, 38(18):61-63.
    [45]张明,顾英,张莉力.响应面法优化絮凝甘薯淀粉的副干酪乳杆菌L1的增值培养基及培养条件[J].饲料研究, 2015, 38(9):64-68.
    [46]CAVALHEIRO C P, RUIZ-CAPILLAS C, HERRERO A M, et al. Application of probiotic delivery systems in meat products[J]. Trends in Food Science&Technology, 2015, 46(1):120-131.
    [47]YAO M, LI B, YE H, et al. Enhanced viability of probiotics(Pediococcus pentosaceus Li05)by encapsulation in microgels doped with inorganic nanoparticles[J]. Food Hydrocolloids, 2018, 83:246-252.
    [48]GANI A, SHAH A, AHMAD M, et al.β-D-glucan as an enteric delivery vehicle for probiotics[J].International Journal of Biological Macromolecules,2018, 106:864-869.
    [49]ZAMAN S A, SARBINI S R. The potential of resistant starch as a prebiotic[J]. Critical Reviews in Biotechnology, 2016, 36(3):578-584.
    [50]WANG X, CONWAY P L, BROWN I L, et al. In vitro utilization of amylopectin and high-amylose maize(amylomaize)starch granules by human colonic bacteria[J]. Applied and Environmental Mircobiology,1999, 65(11):4848-4854.
    [51]AVILA-REYES S V, GARCIA-SUAREZ F J,JIMéNEZ M T, et al. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability[J]. Carbohydrate Polymers, 2014, 102:423-430.
    [52]PANKASEMSUK T, APICHARTSRANGKOON A,WORAMETRACHANON S, et al. Encapsulation of Lactobacillus casei 01 by alginate along with himaize starch for exposure to a simulated gut model[J]. Food Bioscience, 2016, 16:32-36.
    [53]CORTéS R N F, MARTíNEZ M G, GUZMáN I V, et al. Evaluation of modified amaranth starch as shell material for encapsulation of probiotics[J]. Cereal Chemistry, 2014, 91(3):300-308.
    [54]CHANDRALEKHA A, RANI A, TAVANANDI H A, et al. Role of carrier material in encapsulation of yeast(Saccharomyces cerevisiae)by spray drying[J]. Drying Technology, 2017, 35(8):1029-1042.
    [55]O'RIORDAN K, ANDREWS D, BUCKLE K, et al.Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage[J]. Journal of Applied Microbiology, 2001, 91(6):1059-1066.
    [56]ZANJANI M A K, TARZI B G, SHARIFAN A, et al. Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition[J]. Iranian Journal of Pharmaceutical Research:IJPR, 2014, 13(3):843-852.
    [57]LI H, TURNER M S, DHITAL S. Encapsulation of Lactobacillus plantarum in porous maize starch[J].LWT, 2016, 74:542-549.
    [58]XING Y, XU Q, MA Y, et al. Effect of porous starch concentrations on the microbiological characteristics of microencapsulated Lactobacillus acidophilus[J]. Food&Function, 2014, 5(5):972-983.
    [59]CRUZ-BENíTEZ M M, GóMEZ-ALDAPA C A,CASTRO-ROSAS J, et al. Effect of amylose content and chemical modification of cassava starch on the microencapsulation of Lactobacillus pentosus[J]. LWT,2019, 105:110-117.
    [60]ASHWAR B A, GANI A, GANI A, et al. Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics[J]. Food Chemistry, 2018, 239:287-294.
    [61]SOUKOULIS C, SINGH P, MACNAUGHTAN W,et al. Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films[J]. Food Hydrocolloids, 2016, 52:876-887.
    [62]RODRíGUEZ-SANOJA R, OVIEDO N, SANCHEZ S. Microbial starch-binding domain[J]. Current Opinion in Microbiology, 2005, 8(3):260-267.
    [63]JI Q, VINCKEN J P, SUURS L C J M, et al. Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis[J].Plant Molecular Biology, 2003, 51(5):789-801.
    [64]HUANG X F, NAZARIAN F, VINCKEN J P, et al. A tandem CBM25 domain ofα-amylase from Microbacterium aurum as potential tool for targeting proteins to starch granules during starch biosynthesis[J]. BMC Biotechnology, 2017, 17(1):86.
    [65]COCKBURN D W, SUH C, MEDINA K P, et al.Novel carbohydrate binding modules in the surface anchoredα‐amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut[J]. Molecular Microbiology, 2018, 107(2):249-264.
    [66]ARMENTA S, MORENO-MENDIETA S, SáNCHEZCUAPIO Z, et al. Advances in molecular engineering of carbohydrate-binding modules[J]. Proteins:Structure, Function, and Bioinformatics, 2017, 85(9):1602-1617.
    [67]DALMIA B K, NIKOLOV Z L. Characterization of aβ-galactosidase fusion protein containing the starchbinding domain of Aspergillus glucoamylase[J]. Enzyme and Microbial Technology, 1994, 16(1):18-23.
    [68]YADAV R, KUMAR V, BAWEJA M, et al. Gene editing and genetic engineering approaches for advanced probiotics:A review[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(10):1735-1746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700