燃耗深度对U_3Si_2-Al弥散型燃料元件芯体中气孔的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Burnup Depth on Porosity in Core of U_3Si_2-Al Dispersed Fuel Element
  • 作者:何文 ; 伍晓勇 ; 吴璐 ; 温榜 ; 朱伟 ; 张伟 ; 潘荣剑 ; 王桢 ; 黄伟杰
  • 英文作者:He Wen;Wu Xiaoyong;Wu Lu;Wen Bang;Zhu Wei;Zhang Wei;Pan Rongjian;Wang Zhen;Huang Weijie;Reactor Operation and Application Sub-Institute, Nuclear Power Institute of China;
  • 关键词:U3Si2-Al ; 弥散型燃料元件 ; 燃耗深度 ; 气孔 ; 显微组织
  • 英文关键词:U3Si2-Al;;Dispersed fuel element;;Burnup depth;;Porosity;;Microstructure
  • 中文刊名:HDLG
  • 英文刊名:Nuclear Power Engineering
  • 机构:中国核动力研究设计院反应堆运行与应用研究所;
  • 出版日期:2017-06-30
  • 出版单位:核动力工程
  • 年:2017
  • 期:v.38
  • 基金:四川省国际科技合作与交流计划资助项目(2016HH0014);; 中国博士后科学基金资助项目(2015M582575)
  • 语种:中文;
  • 页:HDLG2017S1041
  • 页数:5
  • CN:S1
  • ISSN:51-1158/TL
  • 分类号:173-177
摘要
辐照过程中,燃料颗粒内部会产生裂变气体形成气孔,将对其热/力学性能造成显著影响。采用带屏蔽的金相显微镜(OM)、扫描电镜(SEM)和能谱仪(EDS)对辐照后U_3Si_2-Al弥散型燃料中U_3Si_2燃料颗粒的显微组织进行了观察,统计分析了燃料颗粒内气孔的形貌、尺寸及分布,获得气孔平均尺寸及孔隙率随燃耗深度的变化规律。结果表明,裂变密度在2.34×10~(27)~3.74×10~(27)m~(-3)范围内时,U_3Si_2-Al燃料颗粒中的裂变气体气孔的形貌未发生较大改变,均呈球状。而裂变气体气孔平均尺寸以及孔隙率均随着裂变密度的增加而增大,存在两个阶段:裂变密度在2.34×10~(27)~3.19×10~(27)m~(-3)范围内,稳态增长;裂变密度在3.19×10~(27)~3.74×10~(27)m~(-3)范围内,加速增长。
        Thermal/mechanical properties of the fuels are dominantly affected by the fission pores produced from fuel particles during irradiation. In this paper, the effect of U_3Si_2 fuel particle on U_3Si_2-Al dispersed fuel were studied using the optical microscope(OM), scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS). The microstructure of U_3Si_2 was observed. Additionally, the morphology, size and distribution of pores of U_3Si_2 were analyzed statistically. The results show that when the fission density increases from 2.34×10~(27)f/m~3 to 3.74×10~(27)f/m~3, the gas morphology in the U_3Si_2 fuel particles is globular and without great change. However, the average pore size and porosity caused by the fission pores increase with the fission density, which go through two stages: when the fission density of the fuel particles increases from 2.34×10~(27)f/m~3 to 3.19×10~(27)f/m~3, the average pore size and porosity are with steady-state growth; when the fission density of the fuel particles increases from 3.19×10~(27)~ 3.74×10~(27)f/m~3, the average pore size and porosity increase rapidly.
引文
[1]Wiencek T C,Domagala R F,Thresh H R.Thermal Compatibility Studies of Unirradiated Uranium Silicide[R].Proceedings of 1984 RERTR International Conference.Argonne National Laboratory Report.ANL/RERTR/TM-6.1985,61-74.
    [2]Suripto A,Sugond S,Nnsution H.Postirradiation Examination of a Low Enriched U3Si2-Al Fuel Eelement Manufactured And Irradiated At BARAN.INDONESIA[R].International Meeting on Reduced Enrichment for Research and Test Reactors.Sep 18-23,1994,Virginia,USA
    [3]Gerard L.Hofman.Irradiatioon Behaverior of the CNEA’S Experimental Uranium Silicide Dispersion Fuel Plates[R].International Meeting on Reduced Enrichment for Research and Test Reactors.Sep 19-22,1988,San Diego,California,USA.
    [4]Sneglrove J,Copeland G L,Hofman G L.Postirration Examination of ORR Demonstration Elements[R].Argonne National Laboratory Report,2008:151-160
    [5]Sears D F,Vaillancourt K D,Leach D A.Satus of LEU Fuel Development and Irradiation Testing at Chalk River Laboratories[Z].Chalk Rive Laboritories Research report.
    [6]Kim K H.Microstructural characterization of U-Zr alloy fuel slugs for sodium-cooled fast reactor[J].Surface and Interface Analysis,2012,44:151-158.
    [7]Boning K,Petry W.The Microstructure of U3Si2-Al silicide dispersion fuel irradiated at High fission Density[J].J Nucl.Mater,2009,383:254-263.
    [8]Gan J,Keiser Jr D D,Wachs D M,et al.Microstructure of the irradiated U3Si2-Al silicide dispersion fuel[J].J Nucl.Mater,2010,396:234–239.
    [9]邢忠虎,应诗浩.弥散型燃料的裂变气体行为研究[J].核动力工程,2000,2(6):560-567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700