Nanoscale electropolishing of high-purity nickel with an ionic liquid
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nanoscale electropolishing of high-purity nickel with an ionic liquid
  • 作者:Jon ; Derek ; Loftis ; Tarek ; M.Abdel-Fattah
  • 英文作者:Jon Derek Loftis;Tarek M.Abdel-Fattah;Applied Research Center at Thomas Jefferson National Accelerator Facility and Department of Molecular Biology and Chemistry at Christopher Newport University;Department of Physical Sciences, Virginia Institute of Marine Science, College of William and Mary;Faculty of Sciences, Alexandria University;
  • 英文关键词:electrochemical polishing;;ionic liquid;;Ni;;2EG:1VB_4
  • 中文刊名:BJKY
  • 英文刊名:矿物冶金与材料学报(英文版)
  • 机构:Applied Research Center at Thomas Jefferson National Accelerator Facility and Department of Molecular Biology and Chemistry at Christopher Newport University;Department of Physical Sciences, Virginia Institute of Marine Science, College of William and Mary;Faculty of Sciences, Alexandria University;
  • 出版日期:2019-05-10
  • 出版单位:International Journal of Minerals Metallurgy and Materials
  • 年:2019
  • 期:v.26;No.175
  • 语种:英文;
  • 页:BJKY201905013
  • 页数:8
  • CN:05
  • ISSN:11-5787/TF
  • 分类号:121-128
摘要
High purity(>99.9% composition) nickel metal specimens were used in electropolishing treatments with an acid-free ionic liquid electrolyte prepared from quaternary ammonium salts as a green polishing solution. Voltammetry and chronoamperometry tests were conducted to determine the optimum conditions for electrochemical polishing. Atomic force microscopy(AFM) revealed nanoscale effectiveness of each polishing treatment. Atomic force microscopy provided an overall observation of the material interface between the treated and unpolished regions. Surface morphology comparisons summarized electrochemical polishing efficiency by providing root-mean-square roughness averages before and after electrochemical polishing to reveal a mirror finish six times smoother than the same nickel metal surface prior to electropolishing. This transition manifested in a marked change in root-mean-squared roughness from 112.58 nm to 18.64 nm and producing a smooth mirror finish. Finally, the mechanism of the ionic liquid during electropolishing revealed decomposition of choline in the form of a transient choline radical by acceptance of an electron from the nickel-working electrode to decompose to trimethylamine and ethanol.
        High purity(>99.9% composition) nickel metal specimens were used in electropolishing treatments with an acid-free ionic liquid electrolyte prepared from quaternary ammonium salts as a green polishing solution. Voltammetry and chronoamperometry tests were conducted to determine the optimum conditions for electrochemical polishing. Atomic force microscopy(AFM) revealed nanoscale effectiveness of each polishing treatment. Atomic force microscopy provided an overall observation of the material interface between the treated and unpolished regions. Surface morphology comparisons summarized electrochemical polishing efficiency by providing root-mean-square roughness averages before and after electrochemical polishing to reveal a mirror finish six times smoother than the same nickel metal surface prior to electropolishing. This transition manifested in a marked change in root-mean-squared roughness from 112.58 nm to 18.64 nm and producing a smooth mirror finish. Finally, the mechanism of the ionic liquid during electropolishing revealed decomposition of choline in the form of a transient choline radical by acceptance of an electron from the nickel-working electrode to decompose to trimethylamine and ethanol.
引文
[1]N.V.Plechkova and K.R.Seddon,Applications of ionic liquids in the chemical industry,Chem.Soc.Rev.,37(2008),No.1,p.123.
    [2]G.Palumbo and K.T.Aust,Structure-dependence of intergranular corrosion in high purity nickel,Acta Metall.Mater.,38(1990),No.11,p.2343.
    [3]W.Han and F.Z.Fang,Fundamental aspects and recent developments in electropolishing,Int.J.Mach.Tools Manuf.,139(2019),p.1.
    [4]M.Chen,W.L.Ao,C.S.Dai,T.Tao,and J.Yang,Synthesis and electrochemical properties of LiNi0.8Al0.2-xTixO2 cathode materials by an ultrasonic-assisted co-precipitation method,Int.J.Miner.Metall.Mater.,16(2009),No.4,p.452.
    [5]C.Ding,K.W.Gao,and C.F.Chen,Effect of Ca2+on CO2corrosion properties of X65 pipeline steel,Int.J.Miner.Metall.Mater.,16(2009),No.6,p.661.
    [6]A.I.Wixtrom,J.E.Buhler,C.E.Reece,and T.M.Abdel-Fattah,Electrochemical polishing applications and EIS of a vitamin B4-based ionic liquid,J.Electrochem.Soc.,160(2013),No.3,p.E22.
    [7]T.M.Abdel-Fattah,J.D.Loftis,and A.Mahapatro,Nanoscale electrochemical polishing and preconditioning of biometallic nickel-titanium alloys,Nanosci.Nanotechnol.,5(2015),No.2,p.36.
    [8]J.C.Rajaguru,M.Duke,and C.Au,Investigation of electroless nickel plating on rapid prototyping material of acrylic resin,Rapid Prototyping J.,22(2016),No.1,p.162.
    [9]R.Ohara,C.H.Lan,and C.S.Hwang,Electrochemical and structural characterization of electroless nickel coating on Mg2Ni hydrogen storage alloy,J.Alloys Compd.,580(2013),p.S368.
    [10]T.Kume,S.Egawa,G.Yamaguchi,and H.Mimura,Influence of residual stress of electrodeposited layer on shape replication accuracy in Ni electroforming,Procedia CIRP,42(2016),p.783.
    [11]M.H.Liu,Y.Meng,Y.Zhao,F.H.Li,Y.L.Gong,and L.Feng,Electropolishing parameters optimization for enhanced performance of nickel coating electroplated on mild steel,Surf.Coat.Technol.,286(2016),p.285.
    [12]A.I.Wixtrom,J.E.Buhler,C.E.Reece,and T.M.Abdel-Fattah,Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities,J.Environ.Chem.Eng.,1(2013),No.1-2,p.18.
    [13]T.M.Abdel-Fattah and J.D.Loftis,Surface characterization of high purity metals of silver and nickel electropolished with an ionic liquid,ECS Trans.,25(2010),No.39,p.57.
    [14]T.M.Abdel-Fattah,J.D.Loftis,and A.Mahapatro,Nanosized controlled surface pretreatment of biometallic alloy 316Lstainless steel,J.Biomed.Nanotechnol.,7(2010),No.6,p.794.
    [15]T.M.Abdel-Fattah,J.D.Loftis,and A.Mahapatro,Nanoscale surface pretreatment of biomedical Co-Cr alloy,J.Surf.Interfaces Mater.,3(2015),No.1,p.67.
    [16]G.J.Janz,Molten Salts Handbook,Elsevier,2013,p.558.
    [17]T.M.Abdel-Fattah and J.D.Loftis,Comparison of the electrochemical polishing of copper and aluminum in acid and acid-free media,ECS Trans.,25(2009),No.7,p.327.
    [18]T.M.Abdel-Fattah,J.D.Loftis,and A.Mahapatro,Ionic liquid electropolishing of metal alloys for biomedical applications,ECS Trans.,25(2010),No.19,p.57.
    [19]T.Dushatinski,C.Huff,and T.M.Abdel-Fattah,Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions,Appl.Surf.Sci.,385(2016),p.282.
    [20]A.P.Abbott and K.J.McKenzie,Application of ionic liquids to the electrodeposition of metals,Phys.Chem.Chem.Phys.,37(2006),No.8,p.4265.
    [21]A.P.Abbott,G.Frisch,J.Hartley,W.O.Karim,and K.S.Ryder,Anodic dissolution of metals in ionic liquids,Prog.Nat.Sci.,25(2015),No.6,p.595.
    [22]A.P.Abbott,A.Ballantyne,R.C.Harris,J.A.Juma,K.S.Ryder,and G.Forrest,A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions,Electrochim.Acta,176(2015),p.718.
    [23]E.S.Gadelmawla,M.M.Koura,T.M.A.Maksoud,I.M.Elewa,and H.H.Soliman,Roughness parameters,J.Mater.Process.Technol.,123(2002),No.1,p.133.
    [24]R.R.L.De Oliveira,D.A.C.Albuquerque,T.G.S.Cruz,F.M.Yamaji,and F.L.Leite,Measurement of the nanoscale roughness by atomic force microscopy:basic principles and applications,[in]Victor Bellitto eds.,Atomic Force Microscopy,Imaging,Measuring and Manipulating Surfaces at the Atomic Scale,InTech,Croatia,2012,p.147.
    [25]J.D.Loftis and T.M.Abdel-Fattah,Nanoscale electropolishing of high purity silver with a deep eutectic solvent,Colloid Surf.A,551(2016),p.113.
    [26]A.J.Bard and L.R.Faulkner,Electrochemical Methods:Fundamentals and Application,John Wiley and Sons Publishing,New York,1980,p.864.
    [27]M.Lambrechts and W.M.C.Sansen,Biosensors:Microelectrochemical Devices,CRC Press,Leuven,Belgium,1992,p.1.
    [28]J.Dufour,An Introduction to Metallurgy,5th ed.,Cameron,2006,p.23.
    [29]O.Lebedeva,I.Kudryavtsev,D.Kultin,G.Dzhungurova,K.Kalmykov,and L.Kustov,Self-organized hexagonal nanostructures on nickel and steel formed by anodization in1-Butyl-3-methylimidazolium bis(triflate)imide ionic liquid,J.Phys.Chem.,118(2014),No.36,p.21293.
    [30]A.P.Abbott,G.Frisch,K.S.Ryder,Electroplating using ionic liquids,Ann.Rev.Mater.Res.,43(2013),No.1,p.335.
    [31]R.X.Wu,Y.M.Dong,P.P.Jiang,G.L.Wang,Y.M.Chen,and X.M.Wu,Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation,Prog.Nat.Sci.,26(2016),No.3,p.303.
    [32]K.Haerens,E.Matthijs,A.Chmielarz,and B.Van der Bruggen,The use of ionic liquids based on choline chloride for metal deposition:a green alternative?,J.Environ.Manage.,90(2009),11,p.3245.
    [33]K.Haerens,E.Matthijs,K.Binnemans,and B.Van der Bruggen,Electrochemical decomposition of choline chloride based ionic liquid analogues,Green Chem.,11(2009),No.9,p.1357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700