微纳复合沟槽形铝合金表面的结冰性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Icing Performance of Micro-nano Composite Grooves on Aluminum Alloy Surface
  • 作者:弯艳玲 ; 奚传文 ; 董宾 ; 于化东
  • 英文作者:WAN Yan-ling;XI Chuan-wen;DONG Bin;YU Hua-dong;College of Mechanical and Electric Engineering, Changchun University of Science and Technology;
  • 关键词:疏水 ; 复合微纳结构 ; 抗结冰 ; 沟槽
  • 英文关键词:hydrophobic;;composite micro-structure;;anti-icing;;groove
  • 中文刊名:BMGC
  • 英文刊名:China Surface Engineering
  • 机构:长春理工大学机电工程学院;
  • 出版日期:2018-07-11 09:21
  • 出版单位:中国表面工程
  • 年:2018
  • 期:v.31;No.151
  • 基金:国家自然科学基金(51705033);; 吉林省科技发展计划项目(20180101324JC);; 长春理工大学机电工程学院露泉创新基金~~
  • 语种:中文;
  • 页:BMGC201804010
  • 页数:7
  • CN:04
  • ISSN:11-3905/TG
  • 分类号:87-93
摘要
为开发具有抗结冰性能的稳定性铝合金功能表面,采用高速电火花线切割加工技术(Wire cut electrical discharge machining,WEDM)在铝合金表面加工出沟槽形复合微结构,对其润湿性和结冰性能进行测试,并对机理进行分析。结果表明,铝合金表面构建的微纳复合微结构形成了"气垫"效应,减少了液滴与基底的接触面积,增加了液滴在材料表面的表观接触角。测试环境的温度和湿度由于分别改变了材料表面液滴的表面张力和液滴体积,从而改变了材料表面的润湿性。材料表面的润湿性对抗冰效果有重要影响,超疏水表面表现出优异的抗结冰性能,疏水表面次之。抗结冰机理分析发现,沟槽内微结构"捕获"的气体,减小了液滴与固体表面的实际接触面积,加大了液滴重心与冷表面间的距离,增大了形成冰核的热力学势垒,延长了结冰时间,使微结构表面具备一定的抗结冰效果。
        In order to develop a stable aluminum alloy functional surface with anti-icing performance, a grooved composite microstructure was fabricated on the surface of aluminum alloy by high-speed wire cut electrical discharge machining(WEDM) and its wettability and icing performance were tested. The mechanism was simultaneously analyzed. The results show that microstructure on the surface of aluminum alloy form "air cushion" effect, reducing the contact area between the droplet and the substrate and increasing the apparent contact angle of the droplet on the surface of the material. The temperature and humidity of the test environment change the wettability of the material surface by changing the surface tension and droplet volume of the droplet on the material surface, respectively. The wettability of the material surface has an important effect on the ice effect, and the superhydrophobic surface exhibits excellent anti-icing properties, followed by the hydrophobic surface. Analysis of anti-icing mechanism shows that the gas trapped by the microstructure in the groove reduces the actual contact area between the droplet and the solid surface, and increases the distance between the droplet center of gravity and the cold surface. It also increases the thermodynamic barrier of ice nucleation and prolongs the freezing time.Thus, the surface of the microstructure has a certain anti-icing effect.
引文
[1]杨钦,罗荘竹,谭生,等.超疏水自清洁涂层防结冰技术的研究进展[J].中国表面工程,2016,29(4):10-22.YANG Q,LUO Z Z,TAN S,et al.Research progress in antiicing technology of superhydrophobic self-cleaning coatings[J].China Surface Engineering,2016,29(4):10-22(in Chinese).
    [2]徐文骥,宋金龙,孙晶,等.铝基体超疏水表面结冰结霜特性研究[J].制冷学报,2011,32(4):9-13.XU W J,SONG J L,SUN J,et al.Characteristics of ice and frost formation on superhydrophobic surfaces on aluminum substrates[J].Journal of Refrigeration,2011,32(4):9-13(in Chinese).
    [3]曹京宜,张海永,李佳欢,等.超疏水涂层在航空航天领域研究进展与应用[J].化学工程师,2017,31(1):57-60.CAO J Y,ZHANG H Y,LI J H,et al.Research progress and application of superhydrophobic coatings in the aerospace field[J].Chemical Engineer,2017,31(1):57-60(in Chinese).
    [4]何松.超疏水表面抗霜性能的研究进展[J].广州建筑,2017(2):17-22.HE S.Research progress of anti-frost property of superhydrophobic surface[J].Guangzhou Building,2017(2):17-22(in Chinese).
    [5]范永康,刘晓芳,白康,等.防冰融冰型涂料的研究进展[J].化工新型材料,2014,42(5):7-9.FAN Y K,LIU X F,BAI K,et al.Research progress of antiicing and deicing coatings[J].New Chemical Materials,2014,42(5):7-9(in Chinese).
    [6]季银炼,张钧波.结霜前期纳米结构超疏水表面的凝结-冻结特性[J].中国表面工程,2017,30(6):18-25.JI Y L,ZHANG J B.Precracking condensation-freeze characteristics of nanostructured superhydrophobic surfaces[J].China Surface Engineering,2017,30(6):18-25(in Chinese).
    [7]JUNG S,DORRESTIJN M,RAPS D,et al.Are superhydrophobic surfaces best for icephobicity?[J].Langmuir the AcsJournal of Surfaces&Colloids,2011,27(6):3059-3066.
    [8]GUO P,ZHENG Y,WEN M.Icephobic/anti-icing properties of micro/nanostructured surfaces[J].Advanced Materials,2012,24(19):2642-2647.
    [9]AZAR A,MASAKO Y,RI L,et al.Dynamics of ice nucleation on water repellent surfaces[J].Langmuir the ACSJournal of Surfaces&Colloids,2012,28(6):3180-3186.
    [10]JUNG S,DORRESTIJN M,RAPS D,et al.Are superhydrophobicsurfaces best for icephobicity[J].Langmuir,2011,27(6):3059-3066.
    [11]CHEN Y,WANG L,WANG B.Study on robust icephobicity of tape surface[J].Chemical Journal of Chinese Universities,2017,38(4):631-635.
    [12]MEULER A J,MCKINLEY G H,COHEN R E.Exploiting topo-graphical texture to impart ice-phobicity[J].ACS Nano,2010,4(12):7048-7052.
    [13]MEULER A J,SMITH J D,VARANASI K K,et al.Relationships between water wettability and ice adhesion[J].ACSApplied Materials&Interfaces,2010,2(11):3100-3110.
    [14]赵颖.超疏水表面抗结冰及抗冷凝性能研究[D].浙江:浙江工业大学,2014.ZHAO Y.Anti-icing and anti-condensation properties of superhydrophobic surfaces[D].Zhejiang:Zhejiang University of Technology,2014(in Chinese).
    [15]刘涛.不锈钢超疏水表面制备及其防冰性能研究[D].南昌:南昌航空大学,2017:12.LIU T.Fabrication of stainless steel superhydrophobic surface and the anti-icing properties[D].Nanchang:Nanchang Hangkong University,2007:12(in Chinese).
    [16]张友法,吴洁,余新泉,等.可控阵列微纳结构超疏水铜表面冰霜传质特性[J].物理化学学报,2014,30(10):1970-1978.ZHANG Y F,WU J,YU X Q,et al.Frost and ice transport on superhydrophobic copper surfaces with patterned microand nano-structures[J].Journal of Physical Chemistry,2014,30(10):1970-1978(in Chinese).
    [17]TOURKINE P,LE M M,QUéRéD.Delayed freezing on water repellent materials[J].Langmuir the ACS Journal of Surfaces&Colloids,2009,25(13):7214-7216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700