多孔检测试纸渗透率实验及单胞数值模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Permeability Experiment and Unit Cell Numerical Model of Porous Membranes for Paper-based Diagnostics
  • 作者:孙山有铭 ; 冯上升 ; 卢天健
  • 英文作者:SUN Shan-You-Ming;FENG Shang-Sheng;LU Tian-Jian;MOE Key Laboratory for Multifunctional Materials and Structures (LMMS),Xi'an Jiaotong University;State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi'an Jiaotong University;
  • 关键词:检测试纸 ; 多孔介质 ; 毛细流动 ; 颗粒立方单胞 ; 渗透率
  • 英文关键词:permeability;;capillary flow;;porous media;;paper-based diagnostics;;particle-cubic unit cell
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:西安交通大学多功能材料和结构教育部重点实验室;西安交通大学机械结构强度与振动国家重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金资助项目(No.51676156);; 中国博士后基金资助项目(No.2016M590942)
  • 语种:中文;
  • 页:GCRB201906027
  • 页数:8
  • CN:06
  • ISSN:11-2091/O4
  • 分类号:187-194
摘要
本文对侧流试纸NC膜(硝酸纤维素膜)分别进行水平和竖直工况下的毛细流动实验,通过数据拟合得到渗透率。拍摄了NC膜的SEM图片,统计出其粒径和孔径的分布。基于该微观结构图像,提出一套全新的用来预测NC膜渗透率的颗粒立方单胞模型。基于颗粒立方单胞模型,推导了孔隙率、孔径和粒径三者间的理论关系,并得到基于称重法所测孔隙率的验证。最后,采用该模型对渗透率进行数值模拟,并与实验结果进行对比。结果表明,颗粒立方单胞模型能够较好地刻画NC膜的结构和渗流特性。
        Rate-of-rise experiments were performed to measure the permeability of nitrocellulose(NC) membranes for lateral flow tests. In order to characterize the microstructure of NC membranes,the porosity was measured using the weighting method. SEM images were then taken to statistically determine particle and pore size distributions. A novel particle-cubic unit cell model was proposed to represent the pore geometry of NC membranes. Based on the model, the theoretical relation between porosity, pore size and particle size was derived, which agreed well with the experimental data. Fluid flow in the particle-cubic model was numerically simulated with periodic boundary conditions to calculate the permeability. Results obtained using the present numerical model agreed well with experimentally measured permeability.
引文
[1] Hu J, Wang S Q, Wang L, et al. Advances in Paper-based Point-of-care Diagnostics[J]. Biosensors and Bioelectronics, 2014, 54:585-597
    [2] Lee W G, Kim Y G, Chung B G, et al. Nano/Microfluidics for Diagnosis of Infectious Diseases in Developing Countries[J]. Advanced Drug Delivery Reviews, 2010, 62:449-457
    [3] Martinez A W, Phillips S T, Butte M J, et al. Patterned Paper as a Platform for Inexpensive, Low-volume,Portable Bioassays[J]. Angewandte Chemie International Edition, 2006, 46(8):1318-1320
    [4] Yetisen A K, Akram M S, Lowe C R. Paper-based Microfluidic Point-of-care Diagnostic Devices[J]. Lab on a Chip, 2013, 13:2210-2251
    [5] Pelton R. Bioactive Paper Provides a Low-cost Platform for Diagnostics[J]. Trends in Analytical Chemistry, 2009,28(8):925-942
    [6] Wong R C, Tse H Y. Lateral Flow Immunoassay[M]. New York:Humana Press, 2009:1-34
    [7] Elizalde E, Urteaga R, Berli C L A. Precise Capillary Flow for Paper-based Viscometry[J]. Microfluid and Nanofluid,2016, 20:135
    [8] Byon C, Kim S J. Capillary Performance of Bi-porous Sintered Metal Wicks[J]. International Journal of Heat and Mass Transfer, 2012, 55:4096-4103
    [9]Ngo I L, Byon C. Permeability of Microporous Wicks with Geometric Inverse to Sintered Particles[J]. International Journal of Heat and Mass Transfer, 2016, 92:298-302
    [10] Shou D, Fan J, Ding F. Hydraulic Permeability of Fibrous Porous Media[J]. International Journal of Heat and Mass Transfer, 2011, 54:4009-4018
    [11] Holley B, Faghri A. Permeability and Effective Pore Radius Measurements for Heat Pipe and Fuel Cell Applications[J]. Applied Thermal Engineering, 2006, 26:448-462
    [12] Fries N, Dreyer M. The Transition from Inertial to Viscous Flow in Capillary Rise[J]. Journal of Colloid and Interface Science, 2008, 327:125-128
    [13] Washburn E W. The Dynamics of Capillary Flow[J]. The Physical Review, 1921, 17:273-283
    [14] Giesche H. Mercury Porosimetry:a General(Practical)Overview[J]. Particle&Particle Systems Characterization, 2006, 23(1):9-19
    [15] Sing K. The Use of Nitrogen Adsorption for the Characterization of Porous Materials[J]. Colloids&Surfaces a Physicochemical&Engineering Aspects, 2001, 187:3-9
    [16] Kruk M, Li Z, Jaroniec M, et al. Nitrogen Adsorption Study of Surface Properties of Graphitized Carbon Blacks[J]. Langmuir, 1999, 15(4):1435-1441
    [17] Liu Z, Hu J, Zhao Y, et al. Experimental and NumericalStudies on Liquid Wicking into Filter Papers for Paperbased Diagnostics[J]. Applied Thermal Engineering, 2015,88:280-287
    [18] Daniel M C, Astruc D. Gold Nanoparticles:Assembly,Supramolecular Chemistry, Quantum-size-related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology[J]. Chemical Reviews, 2004, 104(1):293-346
    [19] Roth G A, Neu-Baker N M, Brenner S A. SEM Analysis of Particle Size During Conventional Treatment of CMP Process Wastewater[J]. Science of the Total Environment,2015, 508:1-6
    [20] Calmidi V V. Transport Phenomena in High Porosity Fibrous Metal Foams[D]. Boulder:University of Colorado,1998
    [21] Yang X, Lu T J, Kim T. An Analytical Model for Permeability of Isotropic Porous Media[J]. Physics Letters A,2014, 378:2308-2311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700