超(超)临界迷宫式调节阀结构安全性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural Safety Analysis of Ultra Supercritical Labyrinth Control Valve
  • 作者:王宇峰 ; 何庆中 ; 陈雪峰 ; 赵献丹 ; 刘惺 ; 董学莲
  • 英文作者:WANG Yufeng;HE Qingzhong;CHEN Xuefeng;ZHAO XiANDan;LIU Xing;DONG Xuelian;School of Mechanical Engineering,Sichuan University of Science & Engineering;China Valve Co.,Ltd.;
  • 关键词:超(超)临界 ; 迷宫式调节阀 ; 温度分析 ; 应力分析
  • 英文关键词:Ultra-supercritical;;Labyrinth control valve;;Temperature analysis;;Stress analysis
  • 中文刊名:JCYY
  • 英文刊名:Machine Tool & Hydraulics
  • 机构:四川理工学院机械工程学院;华夏阀门有限公司;
  • 出版日期:2019-03-15
  • 出版单位:机床与液压
  • 年:2019
  • 期:v.47;No.479
  • 基金:四川省教育厅创新团队项目(17TD0026);; 自贡市科技支撑项目(2016J216);; 四川理工学院研究生创新基金项目(y2017030)
  • 语种:中文;
  • 页:JCYY201905028
  • 页数:5
  • CN:05
  • ISSN:44-1259/TH
  • 分类号:128-131+186
摘要
针对超(超)临界迷宫式调节阀在使用中可能产生的结构安全性问题,通过ANSYS软件对阀门进行热力耦合分析,揭示了阀门的温度分布以及阀门在热应力和介质压力共同作用下的应力分布情况。选取等效应力较大的阀体、碟片组件以及阀座零件进行应力分析评价。分析结果表明:与介质直接接触的腔面温度较高并向壁面厚度方向形成温度梯度,阀门的边缘以及上方温度相对较低。应力强度评定结果显示除阀座以外其余各零件均符合使用规范且安全余量较大。
        In the actual use of ultra supercritical labyrinth control valve, some structural safety problems may occur. To solve these problems, a thermal coupling analysis for the valve was made through ANSYS software. The temperature distribution and stress distribution of the valve under thermal stress and medium pressure were revealed. The stress analysis and evaluation of the valve body, disc components and seat parts with higher stress were discussed.The results show that the temperature of the inner surface of the valve directly contacted with the medium is higher, and the temperature of the valve forms a temperature gradient along the direction of the wall thickness. The temperature at the edge of the valve and on the top is low. The stress intensity evaluation results show that all the parts except the valve seat meet the specifications and have a larger margin of safety.
引文
[1] 庄乾伟,靖长财.超超临界机组高加跳闸对机组安全性影响分析[J].电站系统工程,2017,33(1):41-44.ZHUANG Q W,JING C C.Ultra Supercritical Unit High Trip Impact Analysis on the Safety of Units[J].Power System Engineering,2017,33(1):41-44.
    [2] 胡建,董小闵,王燕.高压差迷宫式调节阀流动及流固耦合特性仿真研究[D].重庆:重庆大学,2015:21-33.
    [3] 张建华,李树勋,王朝富,等.超(超)临界电动高加三通阀阀体强度应力分析[J].流体机械,2012,40(12):35-38.ZHANG J H,LI S X,WANG C F,et al.Stress Analysis of Electrical and Ultra-supercritical Three-way Valve Body Intensity in a High Pressure Heater[J].Fluid Machinery,2012,40(12):35-38.
    [4] 张锁龙,庞明军,包健,等.大口径球阀阀体设计[J].农业机械学报,2006(2):155-156.ZHANG S L,PANG M J,BAO J,et al.Design of Large Caliber Ball Valve Body[J].Transactions of the Chinese Society for Agricultural Machinery,2006(2):155-156.
    [5] 王学朋.调节阀材料的选择[J].阀门,2006(6):38-40.WANG X P.The Selection of Control Valve Materials[J].Valve,2006(6):38-40.
    [6] 苏丽萍.超高压高温机组主汽阀/调节阀的损伤分析及材料评价[J].汽轮机技术,1987(4):49-57.
    [7] 刘建瑞,李昌,刘亮亮,等.高温高压核电闸阀流固耦合分析[J].流体机械,2012,40(3):23-27.LIU J R,LI C,LIU L L,et al.Fluid-solid-heat Coupling Analysis for High-temperature and High-pressure Nuclear Power Gate Valve[J].Fluid Machinery,2012,40(3):23-27.
    [8] JB4732-1995钢制压力容器:分析设计标准[S].
    [9] 丁伯民.对美国“锅炉压力容器规范VII—2”的分析与理解之二:应力分类及其限制条件[J].化工设备与管道,1994(3):1-7.
    [10] ASME.Boiler and Pressure Vessel Code Section VII,Rules for Construction of Pressure Vessels,Division 2 Alternative Rules[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700