形变量对形变热处理中国低活化马氏体钢显微组织的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of deformation on microstructure of thermomechanical treated China low activation martensitic steel
  • 作者:孙正 ; 赵飞 ; 黄芳
  • 英文作者:SUN Zheng;ZHAO Fei;HUANG Fang;College of Materials and Metallurgy,Guizhou University;Guizhou Institute of Technology;
  • 关键词:中国低活化马氏体钢 ; 形变热处理 ; 形变量
  • 英文关键词:China low activation martensitic steel;;thermomechanical treatment;;deformation
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:贵州大学材料与冶金学院;贵州理工学院;
  • 出版日期:2018-07-23
  • 出版单位:材料热处理学报
  • 年:2018
  • 期:v.39;No.217
  • 基金:国家自然科学基金(51461008,51571066)
  • 语种:中文;
  • 页:JSCL201807012
  • 页数:6
  • CN:07
  • ISSN:11-4545/TG
  • 分类号:85-90
摘要
在Gleeble3500热模拟试验机上对中国低活化马氏体钢进行形变热处理,变形温度为850℃,形变量范围为15%~60%,应变速率为10 s-1,研究形变量对实验钢显微组织的影响。结果表明:形变热处理后,晶粒出现明显的细化,形变量为60%时晶粒细化最为显著,平均尺寸约为5μm;随着形变量的增加马氏体板条有细化的趋势,同时马氏体板条内部产生高密度位错,为纳米级颗粒碳氮化物MX相的形核提供有利位置,促进MX纳米级颗粒大量析出。当形变量为60%时MX纳米级颗粒数量最多,析出的MX纳米级颗粒进一步阻碍位错的滑移,钉扎位错,起到析出强化的作用,同时具有良好的韧性,从而改善高温力学性能,提高高温组织稳定性,以达到提高高温使用温度的目的。
        The thermomechanical treatment for China low activation martensitic steel was carried out on a Gleeble3500 thermal simulated test machine at the deformation temperature of 850 ℃,deformation of 15%-60% and strain rate of 10 s-1. The influence of deformation on microstructure of the steel was studied. The results show that the grain of the steel is obviously refined after thermomechanical treatment,when the deformation is 60%,the average size of the crystal grain of the steel has the smallest value of 5 μm. At the same time,With the increasing of deformation,the martensite lath of the steel tends to be refined,and high density dislocation occurs inside martensite lath,which provides a favorable position for nucleation of nanocrystalline carbonitride MX phase and promotes the precipitation of MX nanocrystalline particles. When the deformation is 60%,the content of nanocrystalline particles MX phase of the steel is the most,which hinders the slip of dislocation,pinning dislocation,playing the role of precipitation strengthening,at the same time,the steel has good toughness,so as to improve the mechanical properties at high temperature and the stability of microstructure at high temperature,so as to increase the use temperature at high temperature.
引文
[1]Kirana R,Raju S,Mythili R,et al.High-temperature phase stability of 9Cr-W-Ta-V-C based reduced activation ferritic-martensitic(RAFM)steels:effect of W and Ta additions[J].Steel Research International,2015,86(7):825-840.
    [2]Song L,Liu S,Mao X,et al.Microstructure evolution of the oxide dispersion strengthened CLAM steel during mechanical alloying process[J].Fusion Engineering and Design,2016,112(7):460-467.
    [3]Sun Z,Zhao F,Huang F,et al.Effect of the thermomechanical treatment on the microstructures of CLAM steel[C]//International Conference on Material Engineering and Application,Wuhan,2018:101-103.
    [4]丁文圆,赵飞,张欢,等.CLAM钢CCT曲线的测定与分析[J].材料热处理报,2017,38(7):101-106.DING Wen-yuan,ZHAO Fei,ZHANG Huan,et al.Determination and analysis of CCT curves of CLAM steel[J].Transactions of Materials and Heat Treatment,2017,38(7):101-106.
    [5]Chen J,Liu Y,Xiao Y,et al.Improvement of high-temperature mechanical properties of low-carbon RAFM steel by MX precipitates[J].Acta Metallurgica Sinica,2018,54(6):1-7.
    [6]Frelek-Kozak M,Kurpaska L,Wyszkowska E,et al.Evaluation of consolidation method on mechanical and structural properties of ODS RAF steel[J].Applied Surface Science,2018,446(12):215-221.
    [7]Tripathy H,Raju S,Hajra R N,et al.High temperature elastic properties of reduced activation ferritic-martensitic(RAFM)steel using impulse excitation technique[J].Metallurgical and Materials Transactions A,2018,49(3):979-989.
    [8]Chauhan A,Walter M,Aktaa J.Towards improved ODS steels:A comparative high-temperature low-cycle fatigue study[J].Fatigue and Fracture of Engineering Materials and Structures,2017,40(12):2128-2140.
    [9]Balavar M,Mirzadeh H.Controlling the mechanical properties of carbon steel by thermomechanical treatment[C]//AIP Conference Proceedings:Biennial International Conference on Ultrafine Grained and Nanostructured Materials,Hormozgan Kish Island,2018,020038.
    [10]De-Deus G,Silva E J,Vieira V T,et al.Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the reciproc files[J].Journal of Endodontics,2017,43(3):462-466.
    [11]Lugovskaya A,Yanushkevich Z,Odnobokova M,et al.Effect of thermomechanical treatment on microstructure and mechanical properties of high-strength low-alloy steel[C]//International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures,Belgorod,2017,020120.
    [12]Chikishev D,Pozhidaeva E.Mathematical modeling of steel chemical composition and modes of thermomechanical treatment influence on hot-rolled plate mechanical properties[J].International Journal of Advanced Manufacturing Technology,2017,92(6):1-14.
    [13]Bhadeshia H,Honeycombe R.Chapter 10-thermomechanical treatment of steels[J].Steels Microstructure and Properties,2017,32(10):271-301.
    [14]Lindau R,Mslang A,Rieth M,et al.Present development status of EUROFER and ODS-EUROFER for application in blanket concepts[J].Fusion Engineering and Design,2005,75(11):989-996.
    [15]王清,郭晓雷,张瑞谦,等.高强铁素体时效不锈钢成分设计[J].材料热处理学报,2014,35(4):72-77.WANG Qing,GUO Xiao-lei,ZHANG Rui-qian,et al.Composition design of high-strength ferritic aging stainless steels[J].Transactions of Materials and Heat Treatment,2014,35(4):72-77.
    [16]Hirose T,Shiba K,Sawai T,et al.Effects of heat treatment process for blanket fabrication on mechanical properties of F82H[J].Journal of Nuclear Materials,2004,329(8):324-327.
    [17]Ono H,Kasada R,Kimura A.Specimen size effects on fracture toughness of JLF-1 reduced-activation ferritic steel[J].Journal of Nuclear Materials,2004,329(8):1117-1121.
    [18]Dai Y,Gavillet D,Restani R.Stressed capsules of austenitic and martensitic steels irradiated in SINQ Target-4 in contact with liquid lead-bismuth eutectic[J].Journal of Nuclear Materials,2008,377(1):225-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700