低载液率液体晃荡冲击压力的试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on the impact pressure of sloshing liquid with low filling level
  • 作者:薛米安 ; 陈奕超 ; 苑晓丽 ; 邢建建 ; 张冠卿 ; 朱瑞虎
  • 英文作者:XUE Mi′an;CHEN Yichao;YUAN Xiaoli;XING Jianjian;ZHANG Guanqing;ZHU Ruihu;Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University;College of Harbour Coastal and Offshore Engineering, Hohai University;College of Science, Hohai University;
  • 关键词:液体晃荡 ; 冲击压力 ; 试验数据可重复性
  • 英文关键词:liquid sloshing;;impact pressure;;reproducibility of experimental data
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:河海大学海岸灾害及防护教育部重点实验室;河海大学港口海岸与近海工程学院;河海大学理学院;
  • 出版日期:2019-07-28
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.346
  • 基金:国家自然科学基金(51679079; 51709093);; 中央高校基本科研业务费专项(2018B12814; 2019B19314);; 水利工程仿真与安全国家重点实验室开放基金(HESS-1703)
  • 语种:中文;
  • 页:ZDCJ201914034
  • 页数:8
  • CN:14
  • ISSN:31-1316/TU
  • 分类号:244-250+280
摘要
基于电动运动模拟平台,通过改变幅度、频率研究了低载液率晃荡问题,获得了液舱内壁上的压力分布对外激励频率的响应规律,所研究频率范围包含了一阶共振模态及二阶共振模态。研究分析了晃荡波破碎现象对试验数据可重复性的影响,发现只有在共振频率附近的两组试验数据的决定系数较小并且随着幅度增大而减小。压力-频率响应曲线显示最大压力峰值的响应频率出现在稍大于依据线性波理论计算出的一阶固有频率处。通过不同振幅的对比研究发现振幅仅在共振模态下对晃荡压力幅值有较大影响。此外,瞬态及稳态压力时程曲线的频域特征表明,压力时程曲线中的频率成分主要为外激励频率或因晃荡波非线性相互作用而产生的倍频。
        A series of sloshing liquid tests with low filling level were conducted on an electric motion simulation platform by varying the external excitation amplitude and frequency. The pressure response on the tank wall to the external excitation frequency was investigated within the frequency range including the first and second-order resonant modes. The effects of sloshing wave breaking on the repeatability of the experimental data was investigated and analysized. It is found that the determination coefficient of two sets of experimental data is rather small only at near the resonant frequencies and its value decreases with the increase of the external excitation amplitude. The pressure-frequency response curves show that the maximum pressure peak appears at the frequency slightly larger than the first-order natural frequency calculated according to the linear wave theory. Through comparing the cases of different amplitudes,it is shown the excitation amplitude has greater influence on the sloshing pressure amplitude only at the resonant mode. In addition, it can also be found from the fast Fourier transformation of the time series of transient and steady state pressures that the main frequency of the pressure time history consists of the external excitation frequency and its multiple components generated by sloshing wave nonlinear interaction.
引文
[1]FALTINSEN O M,ROGNEBAKKE O F,LUKOVSKY I A,et al.Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth[J].Journal of Fluid Mechanics,2000,407:201-234.
    [2]FALTINSEN O M,TIMOKHA A N.An adaptive multimodal approach to nonlinear sloshing in a rectangular tank[J].Journal of Fluid Mechanics,2001,432:167-200.
    [3]HILL D F.Transient and steady-state amplitudes of forced waves in rectangular basins[J].Physics of Fluids,2003,15:1576-1587.
    [4]YANG K K,KIM Y W.A comparative study on the numerical simulation of 2D violent sloshing flows by CCUPand SPH[C]∥The Nineteenth International Offshore and Polar Engineering Conference.Osaka:ISOPE,2009.
    [5]HU C H,SUEYOSHI M,MIYAKE R,et al.A validation study of applying the CIP method and the MPS method to 2Dtank sloshing[C]∥The Nineteenth International Offshore and Polar Engineering Conference.Osaka:ISOPE,2009.
    [6]王元战,王立强.破碎波冲击作用下沉箱式防波堤振动-摇摆运动分析[J].振动与冲击,2001,20(3):21-25.WANG Yuanzhan,WANG Liqiang.Vibration-swing motion analysis of caisson breakwaters under impact of breaking wave[J].Journal of Vibration and Shock,2001,20(3):21-25.
    [7]LEE D H,KIM M H,KWON S H,et al.A parametric sensitivity study on LNG tank sloshing loads by numerical simulations[J].Ocean Engineering,2007,34:3-9.
    [8]唐宇航,陈志坚,张佳栋.基于数值试验的波浪载荷激励船舶振动响应研究[J].振动与冲击,2016,35(22):114-122.TANG Yuhang,CHEN Zhijian,ZHANG Jiadong.Study on vibration response of wave excited ship based on numerical test[J].Journal of Vibration and Shock,2016,35(22):114-122.
    [9]倪广健,林杰威.基于波有限元法的流固耦合结构波传导问题[J].振动与冲击,2016,35(4):204-209.NI Guangjian,LIN Jiewei.Wave-conduction problem of fluid-solid coupling structure based on wave finite element method[J].Journal of Vibration and Shock,2016,35(4):204-209.
    [10]ZHAO D,HU Z,CHEN G,et al.Nonlinear sloshing in rectangular tanks under forced excitation[J].International Journal of Naval Architecture&Ocean Engineering,2018,10(5):545-565.
    [11]BATTAGLIA L,CRUCHAGA M,STORTI M,et al.Numerical modelling of 3D sloshing experiments in rectangular tanks[J].Applied Mathematical Modelling,2018,59:357-378.
    [12]卫志军,岳前进,张文首,等.大尺度储舱内流体晃荡砰击压力的测量方法研究[J].中国科学(物理力学天文学),2014,44:746-758.WEI Zhijun,YUE Qianjin,ZHANG Wenshou,et al.Experimental investigation of violent liquid slamming pressure in large-scaled tank[J].Scientia Sinica(Physica,Mechanica&Astronomica),2014,44:746-758.
    [13]PISTANI F,THIAGARAJAN K.Experimental measurements and data analysis of the impact pressures in a sloshing experiment[J].Ocean Engineering,2012,52:60-74.
    [14]杨志勋,徐潜岳,吴尚华,等.长时间规则激励下的二维液舱晃荡试验尺度效应研究[J].中国造船,2017,58(2):156-164.YANG Zhixun,XU Qianyue,WU Shanghua,et al.Scale effect in sloshing test in 2D model tank under long-playing regular motion[J].Ship Building of China,2017,58(2):156-164.
    [15]陈晓东,卫志军,岳前进,等.面向储舱结构设计的晃荡冲击荷载实验研究[J].振动与冲击,2015,34(18):171-176.CHEN Xiaodong,WEI Zhijun,YUE Qianjin,et al.Experimental investigation on sloshing impact pressure for tank structure design[J].Journal of Vibration and Shock,2015,34(18):171-176.
    [16]KIM S Y,KIM K H,KIM Y H.Comparative study on pressure sensors for sloshing experiment[J].Ocean Engineering,2015,94:199-212.
    [17]LYU W J,MOCTAR O,POTTHOFF R,et al.Experimental and numerical investigation of sloshing using different free surface capturing methods[J].Applied Ocean Research,2017,68:307-324.
    [18]TOSUN U,AGHAZADEH R,SERT C,et al.Tracking free surface and estimating sloshing force using image processing[J].Experimental Thermal and Fluid Science,2017,88:423-433.
    [19]MALENICA S,DIEBOLD L,KWON S H,et al.Sloshing assessment of the LNG floating units with membrane type containment system where we are?[J].Marine Structures,2017,56:99-116.
    [20]XUE M A,LIN P.Numerical study of ring baffle effects on reducing violent liquid sloshing[J].Computers&Fluids,2011,52:116-129.
    [21]XUE M A,ZHENG J,LIN P,et al.Experimental study on vertical baffles of different configurations in suppressing sloshing pressure[J].Ocean Engineering,2017,136:178-189.
    [22]MILKELIS N E,MILLER J K,TAYLOR K V.Sloshing in partially filled liquid tanks and its effect on ship motions:numerical simulations and experimental verification[J].Transactions of the Royal Institution of Naval Architects,1984,126:267-277.
    [23]HATTORI M,ARAMI A,YUI T.Wave impact pressure on vertical walls under breaking waves of various types[J].Coastal Engineering,1994,22:79-114.
    [24]IZAWA Y,OSAKI T,KAMIYA K,et al.Suppression of sloshing by utilizing surface energy and geometry in microliter cylindrical well[J].Sensors and Actuators B(Chemical),2018,258:1036-1041.
    [25]蒋梅荣.弹性侧壁液舱内液体晃荡问题研究[D].大连:大连理工大学,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700