一级应变硬化F316奥氏体不锈钢的高温蠕变性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Creep Properties of Pre-deformed F316 Stainless Steel
  • 作者:王冬颖 ; 王立毅 ; 冯鑫 ; 张滨 ; 雍兴平 ; 张广平
  • 英文作者:WANG Dongying;WANG Liyi;FENG Xin;ZHANG Bin;YONG Xingping;ZHANG Guangping;Shenyang Blower Works Group Corporation;Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences;Key Laboratory for Anisotropy and Texture of Materials,Ministry of Education,School of Materials Science and Engineering,Northeastern University;
  • 关键词:金属材料 ; F316奥氏体不锈钢 ; 蠕变 ; Larson-Miller参数法 ; θ参数法
  • 英文关键词:metallic materials;;F316;;austenite stainless steel;;creep properties;;Larson-Miller parameter method;;θ-projection method
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:沈阳鼓风机集团核电泵业有限公司;中国科学院金属研究所沈阳材料科学国家研究中心;东北大学材料各向异性与织构教育部重点实验室材料科学与工程学院;
  • 出版日期:2019-07-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 基金:国家科技重大专项(2013ZX06002-002);; 国家自然科学基金(51771207,51671050)~~
  • 语种:中文;
  • 页:CYJB201907003
  • 页数:8
  • CN:07
  • ISSN:21-1328/TG
  • 分类号:19-26
摘要
研究了在200 MPa应力下一级应变硬化F316奥氏体不锈钢在650℃、680℃和700℃的蠕变性能和蠕变断裂行为。结果表明:在200 MPa恒定应力下蠕变温度越高其蠕变寿命越短,稳态蠕变速率越大,由应力加载引起的瞬时应变越大。蠕变断裂方式主要为韧性断裂。蠕变孔洞主要分布在三叉晶界等脆弱部位,距离断口越远试样中孔洞的平均尺寸和孔洞面积百分比越小。在与断口距离相同的位置上,随着蠕变温度的提高蠕变孔洞的平均尺寸和面积百分比均明显增大。与未预应变的F316不锈钢相比,具有高密度孪晶的一级应变硬化F316不锈钢具有更大的蠕变抗力。分别基于Larson-Miller参数法和θ参数法外推计算了350℃/200 MPa下的蠕变寿命,θ参数法的拟合曲线与实际蠕变曲线吻合得较好。根据Larson-Miller参数法和θ参数法,探讨了350℃/200 MPa下一级应变硬化F316奥氏体不锈钢长期服役蠕变可靠性。
        Creep properties of the pre-deformed F316 stainless steel by 200 MPa at 650℃, 670℃and 700℃ were investigated. Results show that by a constant tensile stress of 200 MPa, the time to rupture of the pre-deformed F316 stainless steel decreases, while the steady creep rate and the instantaneous creep strain increase with increasing creep temperature. Ductile fracture is the dominant rupture mode for the pre-deformed F316 stainless steel. Creep cavities are mainly located in the triple junctions of grain boundaries, and the average diameter and the area ratio of the voids decrease in the location with the increasing distance to the fracture surface. In the region with the same distance to the fracture surface, the average diameter and area percentage of the voids increase obviously with the increasing creep temperature. The present pre-deformed F316 stainless steel with high density of twins has a better creep resistance than that of non-pre-deformed ones. Time to rupture by 200 MPa at 350℃ was estimated by using the Larson-Miller and θ-projection methods, respectively. The results show that the θ-projection method can give a better correlation. Besides, the long-term creep reliability of the F316 stainless steel served by 200 MP at 350℃ was discussed based on the Larson-Miller and θ-projection methods.
引文
[1] Allen T, Busby J, Meyer M, et al. Materials challenges for nuclear systems[J]. Mater. Today, 2010, 13(12):14
    [2] Zinklea S J. Materials challenges in nuclear energy[J]. Acta Mater., 2013, 61(3):735
    [3] HelmutWolf, Mathew M D, Mannan S L, et al. Prediction of creep parameters of type 316 stainless steel under service conditions using theπ-projection concept[J]. Mater. Sci. Eng., 1992, 159(2):199
    [4] Xu H. Analysis of high temperature creep relaxation of bolted joint[J]. Lubr. Eng., 2013
    [5] Wright J K, Lillo T M, Wright R N, et al. Creep and creep-rupture of Alloy 617[J]. Nucl. Eng. Des., 2018, 329:142
    [6] Yang W Y, Li Z W. Prediction of remaining life of 12Cr1MoV steel for main steam pipe material byθmethod[J]. Acta Metall.Sin., 1999(7):721(杨王玥,李志文.θ法预测12Cr1MoV钢主蒸汽管道材料剩余寿命[J].金属学报, 1999(7):721)
    [7] An Z L, Xuan F Z, Tu S D. High temperature creep performance of 316L stainless steel for diffusion welded joint[J]. Pressure vessel Technology, 2011, 28(7):6(安子良,轩福贞,涂善东. 316L不锈钢扩散焊接头高温蠕变性能[J].压力容器, 2011, 28(7):6)
    [8] Yoda Y, Toshinori Y, Nobuhiro T. Plastic deformation and creep damage evaluations of type 316 austenitic stainless steels by EBSD[J]. Mater. Charact., 2010, 61(10):913
    [9] Kumar J G, Laha K. Small punch creep deformation and rupture behavior of 316L(N)stainless steel[J]. Mater. Sci. Eng., A, 2015,641:315
    [10] Whittaker M T, Evans M, Wilshire B. Long-term creep data prediction for type 316H stainless steel[J]. Mater. Sci. Eng., A, 2012,552:145
    [11] Turski M, Bouchard P J, Steuwer A, et al. Residual stress driven creep cracking in AISI Type 316 stainless steel[J]. Acta Mater.,2008, 56(14):3598
    [12] Lovell A J, Chin B A, Gilbert E R. In-reactor creep-rupture of 20-percent of cold-worked AISI 316 stainless steel[J]. J. Mater. Sci.,1981, 16(4):870
    [13] John Paul Foster, KermitBunde, Robert Gilbert E. Stress state dependence of transient irradiation creep in 20%cold worked 316stainless steel[J]. J. Nucl. Mater., 1998, 257(2):118
    [14] John Paul Foster, KermitBunde, Grossbeck M L, et al. Temperature dependence of the 20%cold worked 316 stainless steel steady state irradiation creep rate[J]. J. Nucl. Mater., 1999, 270(3):357
    [15] People's Republic of China General Administration of quality supervision and quarantine, Metallic materials-uniaxial creep testing method in tension[S]. GB/T 2039-2012(中华人民共和国国家质量监督检疫总局,金属材料单轴拉伸蠕变试验方法[S]. GB/T 2039-2012)
    [16] Liu X Y, Pan Q L, Lu Z L, et al. Creep behavior of Al-Cu-Mg-Ag heat-resistant alloy at elevater temperature[J]. Acta Metall. Sin.2011, 47(1):53
    [17] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science[M].Shanghai:Shang Hai Jiao Tong University Press, 2006(胡赓祥,蔡珣,戒咏华.材料科学基础.第2版[M].上海:上海交通大学出版社, 2006)
    [18] Zhao J, Gong J, Saboo A, et al. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels[J]. Acta Mater., 2018
    [19] Wang S J, T. Jozaghi, I. Karaman, et al. Hierarchical evolution and thermal stability of microstructure with deformation twins in 316stainless steel[J]. Mater. Sci. Eng., A, 2017, 694:121
    [20] Wirmark G, Nilsson J O, Dunlop G L. Sliding at twin boundaries during high-temperature creep[J]. Philos. Mag. A, 1981,43(1):93
    [21] Wang L Y, Song X M, Luo X M, et al. 3D X-ray tomography characterization of creep cavities in small-punch tested 316 stainless steels[J]. Mater. Sci. Eng., A, 2018, 724:69
    [22] National Research Institute for Metals(NRIM)Creep Data Sheet,No. 14B for 18Cr-12Ni-Mo stainless steel plates[DB/OL]. JIS SUS 316-HP. 1988
    [23] National Research Institute for Metals(NRIM)Creep Data Sheet,No.15B for 18Cr-12Ni-Mo stainless steel bars[DB/OL]. JIS SUS316-B. 1988
    [24] Meyers M A, Chawla K K. Mechanical behavior of materials[M].2009:Chambridge University Press.
    [25] Larson F R. A time-temperature relationship for rupture and creep stresses[J]. Transactions of American Society of Mechanical Engineers, 1952, 74:765

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700