无机纳米药物载体在肿瘤诊疗中的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments
  • 作者:康垚 ; 王素真 ; 樊江莉 ; 彭孝军
  • 英文作者:KANG Yao;WANG Suzhen;FAN Jiangli;PENG Xiaojun;State Key Laboratory of Fine Chemicals, Dalian University of Technology;
  • 关键词:纳米粒子 ; 药物 ; 药物输送 ; 光化学 ; 自组装
  • 英文关键词:nanoparticles;;pharmaceuticals;;drug delivery;;photochemistry;;self-assembly
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:大连理工大学精细化工国家重点实验室;
  • 出版日期:2017-11-28 13:46
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:国家自然科学基金项目(21576037,21422601,21421005);; NSFC-辽宁联合基金项目(U1608222)~~
  • 语种:中文;
  • 页:HGSZ201801011
  • 页数:13
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:136-148
摘要
纳米药物作为一种新兴技术,为肿瘤的精确定位和早期诊断、靶向、长效和联合治疗提供了重要的研发平台,为克服传统药物非特异性靶向和非选择性损伤机体组织的瓶颈问题提供了可能。近年来研究者基于量子点、纳米金、纳米介孔硅等无机纳米药物载体设计合成了大量可用于肿瘤诊疗的纳米药物,主要通过"核-壳"结构设计、表面修饰等方法提高纳米药物性能。综述了无机纳米材料作为纳米药物载体在肿瘤诊疗中的应用,详细介绍了纳米药物的设计策略和肿瘤诊疗作用机制,并对未来进行无机纳米药物在肿瘤诊疗中的临床应用进行了展望。
        Nanomedicine, as an integrated platform, has the potential to accurately monitor tumor for early diagnosis and dramatically improve the targeted, long-lasting and combinational therapy. Compared with traditional therapeutics, nanomedicine would effectively improve the drug accumulationand controlled release in the tumor sites to improve the therapeutic effect. Recently, all kinds of nanomedicines are designed and synthesized for tumor diagnosis and treatment based on inorganic nanocarriers, such as quantum dots, gold nanoparticles, silicon nanoparticles and so on. They might be adjusted and promoted their properties by core-shell structure, surface modification and other strategies. In this review, the inorganic nanometer materials as nano drug carriers applied in tumor diagnosis and treatment were summarized; nano drug design strategies and mechanisms of tumor diagnosis and treatment were introduced in detail, and the future of inorganic nano drugs in tumor diagnosis and treatment of clinical application was prospected.
引文
[1]EVENS A M,JOVANOVIC B D,SU Y C,et al.Rituximab-associated hepatitis B virus(HBV)reactivation in lymphoproliferative diseases:meta-analysis and examination of FDA safety reports[J].Annals of Oncology,2010,22(5):1170-1180.
    [2]YEO W,LAM K C,ZEE B,et al.Hepatitis B reactivation in patients with hepatocellular carcinoma undergoing systemic chemotherapy[J].Annals of Oncology,2004,15(11):1661-1666.
    [3]CHABNER B A,ROBERTS T G.Chemotherapy and the war on cancer[J].Nature Reviews Cancer,2005,5(1):65-72.
    [4]WIRADHARMA N,ZHANG Y,VENKATARAMAN S,et al.Self-assembled polymer nanostructures for delivery of anticancer therapeutics[J].Nano Today,2009,4(4):302-317.
    [5]FAROKHZAD O C,LANGER R.Impact of nanotechnology on drug delivery[J].ACS Nano,2009,3(1):16-20.
    [6]WICKI A,WITZIGMANN D,BALASUBRAMANIAN V,et al.Nanomedicine in cancer therapy:challenges,opportunities,and clinical applications[J].Journal of Controlled Release,2015,200:138-157.
    [7]PEER D,KARP J M,HONG S,et al.Nanocarriers as an emerging platform for cancer therapy[J].Nature Nanotechnology,2007,2(12):751-760.
    [8]HO Y P,LEONG K W.Quantum dot-based theranostics[J].Nanoscale,2010,2(1):60-68.
    [9]SANTRA S,KAITTANIS C,SANTIESTEBAN O J,et al.Cell-specific,activatable,and theranostic prodrug for dual-targeted cancer imaging and therapy[J].Journal of the American Chemical Society,2011,133(41):16680-16688.
    [10]ZHANG H,FAN J L,WANG J Y,et al.An off-on COX-2 specific fluorescent probe:targeting the golgi apparatus of cancer cells[J].Journal of the American Chemical Society,2013,135(31):11663-11669.
    [11]ZHANG H,FAN J L,WANG J Y,et al.Fluorescence discrimination of cancer from inflammation by molecular response to COX-2enzymes[J].Journal of the American Chemical Society,2013,135(46):17469-17475.
    [12]WANG B H,FAN J L,WANG X,et al.A nile blue based infrared fluorescent probe:imaging tumors that over-express cyclooxygenase-2[J].Chemical Communications,2015,51(4):792-795.
    [13]FAN J L,GUO S G,WANG S,et al.Lighting-up breast cancer cells by a near-infrared fluorescent probe based on KIAA1363enzyme-targeting[J].Chemical Communications,2017,53(35):4857-4860.
    [14]ZHOU J,YANG Y,ZHANG C.Toward biocompatible semiconductor quantum dots:from biosynthesis and bioconjugation to biomedical application[J].Chemical Reviews,2015,115(21):11669-11717.
    [15]VAN VEGGEL F C J M.Near-infrared quantum dots and their delicate synthesis,challenging characterization,and exciting potential applications[J].Chemistry of Materials,2013,26(1):111-122.
    [16]GUO W.Synthesis of Zn-Cu-In-S/Zn S coreshell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging[J].Theranostics,2013,3(2):99-108.
    [17]SASAKI A,TSUKASAKI Y,KOMATSUZAKI A,et al.Recombinant protein(EGFP-Protein G)-coated Pb S quantum dots for in vitro and in vivo dual fluorescence(visible and second-NIR)imaging of breast tumors[J].Nanoscale,2015,7(12):5115-5119.
    [18]WANG S,RIEDINGER A,LI H,et al.Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects[J].ACS Nano,2015,9(2):1788-1800.
    [19]FENG S,CHEN J,WO Y,et al.Real-time and long-time in vivo imaging in the shortwave infrared window of perforator vessels for more precise evaluation of flap perfusion[J].Biomaterials,2016,103:256-264.
    [20]DEL ROSAL B,CARRASCO E,REN F,et al.Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback[J].Advanced Functional Materials,2016,26(33):6060-6068.
    [21]SANTOS H D A,RUIZ D,LIFANTE G,et al.Time resolved spectroscopy of infrared emitting Ag2S nanocrystals for subcutaneous thermometry[J].Nanoscale,2017,9(7):2505-2513.
    [22]RUIZ D,DEL ROSAL B,ACEBRON M,et al.Ag/Ag2S nanocrystals for high sensitivity near-infrared luminescence nanothermometry[J].Advanced Functional Materials,2017,27(6):12-15.
    [23]MELAMED J R,RILEY R S,VALCOURT D M,et al.Using gold nanoparticles to disrupt the tumor microenvironment:an emerging therapeutic strategy[J].ACS Nano,2016,10(12):10631-10635.
    [24]LI J Y,LIU J,CHEN C Y.Remote control and modulation of cellular events by plasmonic gold nanoparticles:implications and opportunities for biomedical applications[J].ACS Nano,2017,11(3):2403-2409.
    [25]ZHOU W,GAO X,LIU D,et al.Gold nanoparticles for in vitro diagnostics[J].Chemical Reviews,2015,115(19):10575-10636.
    [26]LI N,ZHAO P,ASTRUC D.Anisotropic gold nanoparticles:synthesis,properties,applications,and toxicity[J].Angewandte Chemie International Edition,2014,53(7):1756-1789.
    [27]SUN X,HUANG X,YAN X,et al.Chelator-free 64Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy[J].ACS Nano,2014,8(8):8438-8446.
    [28]SONG J,YANG X,JACOBSON O,et al.Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy[J].ACS Nano,2015,9(9):9199-9209.
    [29]CHEHELTANI R,EZZIBDEH R M,CHHOUR P,et al.Tunable,biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging[J].Biomaterials,2016,102:87-97.
    [30]GE X,SONG Z M,SUN L,et al.Lanthanide(Gd3+and Yb3+)functionalized gold nanoparticles for in vivo imaging and therapy[J].Biomaterials,2016,108:35-43.
    [31]FU J,LIANG L,QIU L.In situ generated gold nanoparticle hybrid polymersomes for water-soluble chemotherapeutics:inhibited leakage and p H-responsive intracellular release[J].Advanced Functional Materials,2017,27(18):1604981(12).
    [32]GAO F,SUN M,XU L,et al.Biocompatible cup-shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent[J].Advanced Functional Materials,2017,27(24):1700605(6).
    [33]CHANG Y,HE L,LI Z,et al.Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy[J].ACS Nano,2017,11(5):4848-4858.
    [34]屈健,田敏,王谦,等.碳纳米管-水纳米流体的光热转化特性[J].化工学报,2016,67(S2):113-119.QU J,TIAN M,WANG Q,et al.Photo-thermal properties of MWCNT-H2O nanofluid[J].CIESC Journal,2016,67(S2):113-119.
    [35]YIN P T,SHAH S,CHHOWALLA M,et al.Design,synthesis,and characterization of graphene-nanoparticle hybrid materials for bioapplications[J].Chemical Reviews,2015,115(7):2483-2531.
    [36]GEORGAKILAS V,TIWARI J N,KEMP K C,et al.Noncovalent functionalization of graphene and graphene oxide for energy materials,biosensing,catalytic,and biomedical applications[J].Chemical Reviews,2016,116(9):5464-5519.
    [37]LIANG C,DIAO S,WANG C,et al.Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes[J].Advanced Materials,2014,26(32):5646-5652.
    [38]LIU J,WANG C,WANG X,et al.Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light‐responsive platform for cancer combination therapy[J].Advanced Functional Materials,2015,25(3):384-392.
    [39]XIE L S,WANG G H,ZHOU H,et al.Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy[J].Biomaterials,2016,103:219-228.
    [40]KALLURU P,VANKAYALA R,CHIANG C S,et al.Nano-graphene oxide-mediated in vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors[J].Biomaterials,2016,95:1-10.
    [41]KANG S,LEE J,RYU S,et al.Gold nanoparticle graphene oxide hybrid sheets attached on mesenchymal stem cells for effective photothermal cancer therapy[J].Chemistry of Materials,2017,29(8):3461-3476.
    [42]WANG S,LIN Q J,CHEN J T,et al.Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis[J].Carbon,2017,112:53-62.
    [43]罗运晖,乐恺,赵凌云,等.交变磁场中Fe3O4磁流体对肿瘤组织加热作用的理论研究[J].化工学报,2009,60(4):833-839.LUO Y H,YUE K,ZHAO L Y,et al.Theoretical study on heating effect of Fe3O4 magnetic fluid on tumor tissues in alternating magnetic field[J].CIESC Journal,2009,60(4):833-839.
    [44]胡平,常恬,陈震宇,等.纳米Fe3O4磁性颗粒表面改性及其在医学和环保领域的应用[J].化工学报,2017,68(7):2641-2652.HU P,CHANG T,CHEN Z Y,et al.Surface modification and application in biomedicine and environmental protection of magnetic Fe3O4 nanoparticles[J].CIESC Journal,2017,68(7):2641-2652.
    [45]LAURENT S,FORGE D,PORT M,et al.Magnetic iron oxide nanoparticles:synthesis,stabilization,vectorization,physicochemical characterizations,and biological applications[J].Chemical Reviews,2008,108(6):2064-2110.
    [46]LEE N,YOO D,LING D,et al.Iron oxide based nanoparticles for multimodal imaging and magneto responsive therapy[J].Chemical Reviews,2015,115(19):10637-10689.
    [47]LI J C,ZHENG L F,CAI H D,et al.Polyethylene imine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging[J].Biomaterials,2013,34(33):8382-8392.
    [48]ZHANG Y,SHEN T T,DENG X,et al.Design of a versatile nanocomposite for‘seeing’drug release and action behavior[J].Journal of Materials Chemistry B,2015,3(43):8449-8458.
    [49]TSENG S J,HUANG K Y,KEMPSON I M,et al.Remote control of light-triggered virotherapy[J].ACS Nano,2016,10(11):10339-10346.
    [50]YUAN Y,DING Z L,QIAN J C,et al.Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis[J].Nano Letters,2016,16(4):2686-2691.
    [51]GUO R R,TIAN Y,WANG Y J,et al.Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer[J].Advanced Functional Materials,2017,27(13):1606398(8).
    [52]YANG C L,CHEN J P,WEI K,et al.Release of doxorubicin by a folate-grafted,chitosan-coated magnetic nanoparticle[J].Nanomaterials,2017,7(4):85-91.
    [53]ZHANG K,XU H X,JIA X Q,et al.Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J].ACS Nano,2016,10(12):10816-10828.
    [54]LUO G F,CHEN W H,LEI Q,et al.A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods[J].Advanced Functional Materials,2016,26(24):4339-4350.
    [55]LIM E K,KIM T,PAIK S,et al.Nanomaterials for theranostics:recent advances and future challenges[J].Chemical Reviews,2014,115(1):327-394.
    [56]WANG X,FENG J I,BAI Y,et al.Synthesis,properties,and applications of hollow micro-/nanostructures[J].Chemical Reviews,2016,116(18):10983-11060.
    [57]CHEN X,CHENG X Y,SOERIYADI A H,et al.Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli[J].Biomaterials Science,2014,2(1):121-130.
    [58]GIMENEZ C,DE LA TORRE C,GORBE M,et al.Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells[J].Langmuir,2015,31(12):3753-3762.
    [59]HWANG A A,LU J,TAMANOI F,et al.Functional nanovalves on protein‐coated nanoparticles for in vitro and in vivo controlled drug delivery[J].Small,2015,11(3):319-328.
    [60]WANG Y H,SONG S Y,LIU J J,et al.Zn O-functionalized upconverting nanotheranostic agent:multi-modality imaging-guided chemotherapy with on-demand drug release triggered by p H[J].Angewandte Chemie International Edition,2015,54(2):536-540.
    [61]ZHANG K,XU H X,JIA X Q,et al.Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor[J].ACS Nano,2016,10(12):10816-10828.
    [62]CHEN W H,LUO G F,QIU W X,et al.Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemotherapy[J].Biomaterials,2017,117:54-65.
    [63]CHEN F,HUANG P,ZHU Y J,et al.The photoluminescence,drug delivery and imaging properties of multifunctional Eu3+/Gd3+dual-doped hydroxyapatite nanorods[J].Biomaterials,2011,32(34):9031-9039.
    [64]LIU M,LIU H,SUN S F,et al.Multifunctional hydroxyapatite/Na(Y/Gd)F4:Yb3+,Er3+composite fibers for drug delivery and dual modal imaging[J].Langmuir,2014,30(4):1176-1182.
    [65]SYAMCHAND S S,PRIYA S,SONY G.Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal(luminomagnetic)cell imaging[J].Microchimica Acta,2015,182(5):1213-1221.
    [66]LI D L,HE J M,HUANG X,et al.Intracellular p H-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug[J].RSC Advances,2015,5(39):30920-30928.
    [67]HAO X H,HU XX,ZHANG C M,et al.Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite[J].ACS Nano,2015,9(10):9614-9625.
    [68]WANG Y F,WANG J L,HAO H,et al.In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles[J].ACS Nano,2016,10(11):9927-9937.
    [69]LYBAERT L,RYU K A,NUHN L,et al.Cancer cell lysate entrapment in Ca CO3 engineered with polymeric TLR-agonists:immune-modulating microparticles in view of personalized antitumor vaccination[J].Chemistry of Materials,2017,29(10):4209-4217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700