球形WC增强铁基复合等离子堆焊层的组织与摩擦学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Tribological Properties of Fe-based Composite Coatings Reinforced by Spherical WC Particles using Plasma Transferred Arc
  • 作者:范丽 ; 陈海龑 ; 刘珊珊 ; 董耀华 ; 董丽华 ; 尹衍升
  • 英文作者:FAN Li;CHEN Haiyan;LIU Shanshan;DONG Yaohua;DONG Lihua;YIN Yansheng;College of Ocean Science and Engineering,Shanghai Maritime University;Department of Marine Engineering,Nantong Shipping College;College of Chemical and Environmental Engineering,Shanghai Institute of Technology;
  • 关键词:铁基复合涂层 ; 球形WC ; 等离子堆焊 ; 摩擦磨损
  • 英文关键词:Fe-based composite coating;;spherical WC;;plasma transferred arc(PTA);;friction and wear
  • 中文刊名:MCXX
  • 英文刊名:Tribology
  • 机构:上海海事大学海洋科学与工程学院;南通航运职业技术学院轮机工程系;上海应用技术大学化学与环境工程学院;
  • 出版日期:2017-12-04 22:35
  • 出版单位:摩擦学学报
  • 年:2018
  • 期:v.38;No.183
  • 基金:海洋公益性行业科研专项经费项目(201405013-3);; 国家自然科学基金项目(51609133);; 上海海事大学科研基金项目(20130448)资助~~
  • 语种:中文;
  • 页:MCXX201801003
  • 页数:11
  • CN:01
  • ISSN:62-1095/O4
  • 分类号:20-30
摘要
为提高304不锈钢的摩擦学性能,将质量分数为30%和60%的球形WC添加到铁基复合粉末,采用等离子堆焊技术在其表面制备了WC增强铁基复合涂层.分析其显微组织结构、物相和显微硬度,在恒定载荷(50 N)和滑动速度(20 mm/s)下进行干摩擦磨损试验,研究其干滑动摩擦学性能.结果表明:富含Cr的固溶强化奥氏体、高硬度的Cr7C3和WC增强相的存在,提高了WC增强铁基堆焊层的硬度,30%WC和60%WC涂层的显微硬度达到HV0.2665和HV0.2724,比铁基涂层提高了21.1%和31.9%,是304基体的3.7和4倍;30%WC和60%WC涂层的摩擦系数和磨损率分别为0.59和2.639×10~(–6) mm~3·N~(–1)·m~(–1),0.42和1.111×10~(–6) mm~3·N~(–1)·m~(–1).30%WC和60%WC涂层均表现出优异的耐磨性能,其磨损机理分别为黏着磨损和二体磨粒磨损的混合机制,和三体磨粒磨损.
        In order to improve the wear resistance of 304 austenitic stainless steel,the Fe-based composite coatings reinforced by spherical WC particles using plasma transferred arc were prepared by adding mass fraction 30% and 60%WC to the Fe-based composite powder,and coated on 304 stainless steel.The microstructure,phase compositions,and microhardness of coatings were determined.At a load of 50 N and a sliding speed of 20 mm/s,dry sliding wear resistances of the composite coating were investigated.The results show that the presence of WC reinforced phase,Cr_7C_3 hard phase and Cr-rich solution-strengthening austenite greatly increased the microhardness of the WC reinforced coatings.The microhardness of 30% WC and 60% WC coatings were HV0.2665 and HV0.2724,which increased by21.1% and 31.9% as compared with the Fe-based coating,and were 3.7 and 4 times as high as that of 304 stainless steel respectively.The coefficient of friction and the wear rate were 0.59 and 2.639×10~(–6) mm~3·N~(–1)·m~(–1) for 30% WC coating and 0.42 and 1.111×10~(–6) mm~3·N~(–1)·m~(–1) for 60% WC coatings.And both 30% WC and 60% WC coatings presented excellent wear resistance.Adhesive and two-body abrasive wear were predominant for 30% WC coating,whereas threebody abrasion was the main wear mechanism for 60% WC coating.
引文
[1]Xu P,Lin C X,Zhou C Y,et al.Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings[J].Surface and Coatings Technology,2014,238:9-14.doi:10.1016/j.surfcoat.2013.10.028.
    [2]Lu X L,Liu X B,Yu P C,et al.Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN selflubricating anti-wear composite coatings on 304 stainless steel by laser cladding[J].Applied Surface Science,2015,355:350-358.doi:10.1016/j.apsusc.2015.07.138.
    [3]Sun G F,Zhang Y K,Zhang M K,et al.Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with CrCr B2[J].Applied Surface Science,2014,295:94-107.doi:10.1016/j.apsusc.2014.01.011.
    [4]Ramesh C S,Srinivas C K.Friction and wear behavior of lasersintered iron-silicon carbide composites[J].Journal of Materials Processing Technology,2009,209(14):5429-5436.doi:10.1016/j.jmatprotec.2009.04.018.
    [5]Liu J,Zhang S,Wang H.Microstructure and wear resistance of laser cladding WC particles reinforced composite coating[J].The Chinese Journal of Nonferrous Metals,2012,22(9):2600-2607.
    [6]Surzhenkov A,Antonov M,Goljandin D,et al.High-temperature erosion of Fe-based coatings reinforced with cermet particles[J].Surface Engineering,2016,32(8):624-630.doi:10.1080/02670844.2016.1145377.
    [7]Bartkowski D,M?ynarczak A,Piasecki A,et al.Microstructure,microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding[J].Optics&Laser Technology,2015,68:191-201.
    [8]Xiong Rongting.Microstructure and properties of in-situ synthesized VC particles reinforced ferrous matrix composites[D].Wuhan:Huazhong University of Science and Technology,2005(in Chinese)[熊容廷.原位合成VC颗粒增强铁基复合材料的微观组织与性能[D].武汉:华中科技大学,2005.].
    [9]Ni Z F,Sun Y S,Xue F,et al.Microstructure and properties of austenitic stainless steel reinforced with in situ Ti C particulate[J].Materials&Design,2011,32(3):1462-1467.
    [10]Li J,Chen C,Squartini T,et al.A study on wear resistance and microcrack of the Ti3Al/Ti Al+Ti C ceramic layer deposited by laser cladding on Ti-6Al-4V alloy[J].Applied Surface Science,2010,257(5):1550-1555.doi:10.1016/j.apsusc.2010.08.094.
    [11]Liu Xiubo,Qiao Shijie,Zhai Yongjie,et al.Microstructure and tribological properties of laser cladding self-lubricating anti-wear composite coatings on TA2 alloy[J].Tribology,2017,37(1):75-82(in Chinese)[刘秀波,乔世杰,翟永杰,等.TA2合金激光熔覆自润滑复合涂层组织与摩擦学性能[J].摩擦学学报,2017,37(1):75-82].doi:10.16078/j.tribology.2017.01.010.
    [12]Qiao Hong,Li Qingtang,Fu Hanguang,et al.The organization and properties of cladding layer of laser cladding ceramic phase reinforced iron matrix[J].Transactions of the China Welding Institution,2015,36(1):67-69(in Chinese)[乔虹,李庆棠,符寒光,等.激光熔覆原位合成陶瓷相增强铁基熔覆层的组织和性能[J].焊接学报,2015,36(1):67-69].
    [13]Peng Siyuan.Research on property of WC particle reinforced ironbased composite surfacing layer[D].Anhui Jianzhu University,2015(in Chinese)[彭思源.WC颗粒增强铁基复合堆焊层性能研究[D].安徽建筑大学,2015].
    [14]Li Yuxi,He Yuehui,Chen Chuxuan.Preparative technology of spherical cast tungsten carbide powder[J].Materials Science and Engineering of Powder Metallurgy,2006,11(6):323-328(in Chinese)[李玉玺,贺跃辉,陈楚轩.球形铸造碳化钨的制备技术[J].粉末冶金材料科学与工程,2006,11(6):323-328].
    [15]Li Xiubing,Liu Chen,Gao Yimin.The two-body abrasive wear of WC particle reinforced steel matrix composites[J].Foundry,2006,34(5):482-485(in Chinese)[李秀兵,刘琛,高义民.WCp增强钢基表层复合材料的两体磨粒磨损性能[J].铸造,2006,34(5):482-485].
    [16]Li Xiubing,Fang Liang,Gao Yimin.The three body abrasive wear of WC particle reinforced steel matrix composites[J].Foundry Technology,2007,28(3):316-318(in Chinese)[李秀兵,方亮,高义民,等.WCp增强钢基复合材料的三体磨损性能[J].铸造技术,2007,28(3):316-318].
    [17]Liu X B,Meng X J,Liu H Q,et al.Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti-6Al-4V alloy[J].Materials&Design,2014,55:404-409.
    [18]Yuan Jianhui,Zhu Yingchun,Lei Qiang,et al.Fabrication and high temperature tribological properties of self-lubrication plasma sprayed WC-Co-Cu-Ba F2/Ca F2 self-lubricating wear resistant coatings[J].China Surface Engineering,2012,25(2):31-36(in Chinese)[袁建辉,祝迎春,雷强,等.等离子喷涂制备WC-CoCu-Ba F2/Ca F2自润滑耐磨涂层及其高温摩擦性能[J].中国表面工程,2012,25(2):31-36].
    [19]Zhang Ning.Study on the microstructure and property of WCparticulates reinforced steel matrix composites[D].Beijing:China University of Mining and Technology,2015(in Chinese)[张宁.WC颗粒增强钢基复合材料的组织及性能研究[D].北京:中国矿业大学,2015].
    [20]Prabu S B,Karunamoorthy L.Microstructure-based finite element analysis of failure prediction in particle-reinforced metal-matrix composite[J].Journal of Materials Processing Technology,2008,207(1):53-62.
    [21]Fernández M R,García A,Cuetos J M,et al.Effect of actual WCcontent on the reciprocating wear of a laser cladding Ni Cr BSi alloy reinforced with WC[J].Wear,2015,324:80-89.
    [22]Guo C,Chen J,Zhou J,et al.Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating[J].Surface and Coatings Technology,2012,206(8):2064-2071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700