CUBE曲面滤波参数联合优选关键技术及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The key technology and application of parameter optimization combined CUBE and surface filter
  • 作者:赵荻能 ; 吴自银 ; 李家彪 ; 周洁琼 ; 张田升 ; 刘洋 ; 朱超 ; 余威
  • 英文作者:ZHAO Dineng;WU Ziyin;LI Jiabiao;ZHOU Jieqiong;ZHANG Tiansheng;LIU Yang;ZHU Chao;YU Wei;Second Institute of Oceanography,Ministry of Natural Resources;Key Laboratory of Submarine Geosciences,State Oceanic Administration;Environment Monitoring Center of the South China Sea, South China Sea Branch of State Oceanic Administration;
  • 关键词:多波束测深 ; CUBE算法 ; 参数优选 ; 算法原理 ; 数学模型
  • 英文关键词:multi-beam bathymetry;;CUBE algorithm;;parameter optimization;;algorithm principle;;mathematical model
  • 中文刊名:CHXB
  • 英文刊名:Acta Geodaetica et Cartographica Sinica
  • 机构:自然资源部第二海洋研究所;国家海洋局海底科学重点实验室;国家海洋局南海环境监测中心;
  • 出版日期:2019-02-15
  • 出版单位:测绘学报
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(41830540;41476049; 41606057);; 卫星海洋环境动力学国家重点实验室自主课题(SOEDZZ1802);; 科技部科技基础性工作专项(2013FY112900);; 浙江省公益性项目(2016C31120)~~
  • 语种:中文;
  • 页:CHXB201902015
  • 页数:11
  • CN:02
  • ISSN:11-2089/P
  • 分类号:115-125
摘要
CUBE(combined uncertainty and bathymetry estimator)算法是国际上主流的多波束测深异常值自动探测与处理算法,在国内外被广泛应用,但对其核心算法和参数知之甚少,不利于该项技术的国产化。本文详细阐述了CUBE算法的基本原理、数学模型、关键参数和处理步骤,进而建立了CUBE曲面滤波参数联合优选方法。通过选取典型地形区、参数试验、对比分析等步骤完成参数的联合优选,并用台湾浅滩实测数据进行了验证。结果表明,优化后的参数可有效提升多波束数据自动处理的精度和效率。本文成果可应用于国产多波束测深处理软件的深化研发以及多波束实测数据处理。
        CUBE(combined uncertainty and bathymetry estimator) is a widespread algorithm in the world to automatically detect and process multi-beam sounding outliers. While, little is known about its core algorithms and parameters, which is not good for the localization of this technology. In this paper, the basic principle, mathematical model, key parameters and processing steps of CUBE algorithm are elaborated. Then a method of parameter optimization selection combining CUBE and surface filter is established. And an example is presented, in which optimized parameters are selected by choosing typical bathymetric area, parameter test, comparative analysis and etc. And the optimized parameters are verified with the observed data in the Taiwan Banks. The results show that the optimized parameters can effectively improve the accuracy and efficiency of automatic processing of multi-beam data. The technology in this paper can provide reference for deepening research and development of domestic multi-beam sounding processing software and multi-beam data processing.
引文
[1] 李家彪. 多波束勘测原理技术与方法[M]. 北京: 海洋出版社, 1999. LI Jiabiao. Multibeam sounding principles, survey technologies and data processing methods[M]. Beijing: Ocean Press, 1999.
    [2] 赵建虎. 现代海洋测绘[M]. 武汉: 武汉大学出版社, 2008. ZHAO Jianhu. Modern marine surveying and charting[M]. Wuhan: Wuhan University Press, 2008.
    [3] 黄辰虎, 陆秀平, 黄谟涛, 等. 浅水多波束测深潮汐改正技术[C]//第十九届海洋测绘综合性学术研讨会论文集. 九江: 中国测绘学会, 2007. HUANG Chenhu, LU Xiuping, HUANG Motao, et al. Shallow water multibeam sounding tide correction technology[C]//Marine Surveying and Mapping Comprehensive Symposium. Jiujiang: Chinese Society of Geodesy, Photogrammetry and Cartography, 2007.
    [4] 阳凡林, 李家彪, 吴自银, 等. 多波束测深瞬时姿态误差的改正方法[J]. 测绘学报, 2009, 38(5): 450-456. YANG Fanlin, LI Jiabiao, WU Ziyin, et al. The methods of removing instantaneous attitude errors for multibeam bathymetry data[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5): 450-456.
    [5] 赵荻能, 吴自银, 周洁琼, 等. 声速剖面精简运算的改进D-P算法及其评估[J]. 测绘学报, 2014, 43(7): 681-689.ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. A method for streamlining and assessing sound velocity profiles based on improved D-P algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7): 681-689.
    [6] 吴自银, 李家彪, 阳凡林, 等. 一种大陆坡脚点自动识别与综合判断方法[J]. 测绘学报, 2014, 43(2): 170-177. WU Ziyin, LI Jiabiao, YANG Fanlin, et al. An intergrated method for automatic identification of the foot point of slope[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2): 170-177.
    [7] 赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10): 1786-1794. DOI: 10.11947/j.AGCS.2017.20170276. ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1786-1794. DOI: 10.11947/j.AGCS.2017.20170276.
    [8] WU Ziyin, JIN Xianglong, LI Jiabiao, et al. Linear sand ridges on the outer shelf of the east China Sea[J]. Chinese Science Bulletin, 2005, 50(21): 2517-2528.
    [9] WU Ziyin, JIN Xianglong, CAO Zhenyi, et al. Distribution, formation and evolution of sand ridges on the East China Sea shelf[J]. Science in China Series D: Earth Sciences, 2010, 53(1): 101-112.
    [10] WU Ziyin, LI Jiabiao, JIN Xianglong, et al. Distribution, features, and influence factors of the submarine topographic boundaries of the Okinawa Trough[J]. Science China Earth Sciences, 2014, 57(8): 1885-1896.
    [11] WU Ziyin, JIN Xianglong, ZHOU Jieqiong, et al. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea[J]. Marine Geophysical Research, 2017, 38(1-2): 187-198.
    [12] ZHOU Jieqiong, WU Ziyin, JIN Xianglong, et al. Observations and analysis of giant sand wave fields on the Taiwan Banks, Northern South China Sea[J]. Marine Geology, 2018, 406(1): 132-141.
    [13] ZHAO Jianhu, MENG Junxia, ZHANG Hongmei, et al. A new method for acquisition of high-resolution seabed topography by matching seabed classification images[J]. Remote Sensing, 2017, 9(12): 1214. DOI: 10.3390/rs9121214.
    [14] ZHAO Jianhu, YAN Jun, ZHANG Hongmei, et al. A new method for weakening the combined effect of residual errors on multibeam bathymetric data[J]. Marine Geophysical Research, 2014, 35(4): 379-394. DOI: 10.1007/s11001-014-9228-6.
    [15] 吴自银, 阳凡林, 罗孝文, 等. 高分辨率海底地形地貌——探测处理理论与技术[M]. 北京: 科学出版社, 2017. WU Ziyin, YANG Fanlin, LUO Xiaowen, et al. High resolution submarine geomorphology[M]. Beijing: Science Press, 2017.
    [16] 赵建虎, 王爱学. 精密海洋测量与数据处理技术及其应用进展[J]. 海洋测绘, 2015, 35(6): 1-7. DOI: 10.3969/j.issn.1671-3044.2015.06.001. ZHAO Jianhu, WANG Aixue. Precise marine surveying and data processing technology and their progress of application[J]. Hydrographic Surveying and Charting, 2015, 35(6): 1-7. DOI: 10.3969/j.issn.1671-3044.2015.06.001.
    [17] 吴自银, 阳凡林, 李守军, 等. 高分辨率海底地形地貌——可视计算与科学应用[M]. 北京: 科学出版社, 2018. WU Ziyin, YANG Fanlin, LI Shoujun, et al. High resolution submarine geomorphology[M]. Beijing: China Science Press, 2018.
    [18] FARR H K. Multibeam bathymetric sonar: sea beam and hydro chart[J]. Marine Geodesy, 1980, 4(2): 77-93. DOI: 10.1080/15210608009379375.
    [19] 阳凡林, 李家彪, 吴自银, 等. 浅水多波束勘测数据精细处理方法[J]. 测绘学报, 2008, 37(4): 444-450, 457. YANG Fanlin, LI Jiabiao, WU Ziyin, et al. The methods of high quality post-processing for shallow multibeam data[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4): 444-450, 457.
    [20] LUCIEER V, HUANG Zhi, SIWABESSY J. Analyzing uncertainty in multibeam bathymetric data and the impact on derived seafloor attributes[J]. Marine Geodesy, 2016, 39(1): 32-52. DOI: 10.1080/01490419.2015.1121173.
    [21] REZVANI M H, SABBAGH A, ARDALAN A A. Robust automatic reduction of multibeam bathymetric data based on M-estimators[J]. Marine Geodesy, 2015, 38(4): 327-344. DOI: 10.1080/01490419.2015.1053639.
    [22] BOURILLET J F, EDY C, RAMBERT F, et al. Swath mapping system processing: bathymetry and cartography[J]. Marine Geophysical Researches, 1996, 18(2-4): 487-506. DOI: 10.1007/bf00286091.
    [23] CARESS D W, CHAYES D N. Improved processing of hydrosweep DS multibeam data on the R/V Maurice Ewing[J]. Marine Geophysical Researches, 1996, 18(6): 631-650. DOI: 10.1007/bf00313878.
    [24] PEREDA GARCíA R, PINA GARCíA F, DE LUIS RUIZ J M, et al. Model for the processing and estimation of dual frequency echo sounder observations in detailed bathymetries[J]. Marine Geodesy, 2016, 39(3-4): 305-320. DOI: 10.1080/01490419.2016.1193577.
    [25] EEG J. On the identification of spikes in soundings[J]. International Hydrographic Review, 1995, 72(1): 33-41.
    [26] DEBESE N. Use of a robust estimator for automatic detection of isolated errors appearing in the bathymetry data[J]. International Hydrographic Review, 2001, 2(2): 32-44.
    [27] DEBESE N. Multibeam echosounder data cleaning through an adaptive surface-based approach[C]//Proceedings of the US Hydrographic Conference. Norfolk: [s.n.], 2007: 1-18.
    [28] LECOURS V, DOLAN M F J, MICALLEF A, et al. A review of marine geomorphometry, the quantitative study of the seafloor[J]. Hydrology and Earth System Sciences, 2016, 20(8): 3207-3244. DOI: 10.5194/hess-20-3207-2016.
    [29] 张志衡, 彭认灿, 黄文骞, 等. 考虑自然邻点影响域的多波束测深数据趋势面滤波改进算法[J]. 测绘学报, 2018, 47(1): 35-47. DOI: 10.11947/j.AGCS.2018.20160565. ZHANG Zhiheng, PENG Rencan, HUANG Wenqian, et al. An improved algorithm of tendency surface filtering in multi-beam bathymetric data considering the natural neighboring points influence field[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 35-47. DOI: 10.11947/j.AGCS.2018.20160565.
    [30] DU Z, WELLS D, MAYER L. An approach to automatic detection of outliers in multibeam echo sounding data[J]. Hydrographic Journal, 1996, 79(1): 19-25.
    [31] LADNER R W, ELMORE P, PERKINS A L, et al. Automated cleaning and uncertainty attribution of archival bathymetry based on a priori knowledge[J]. Marine Geophysical Research, 2017, 38(3): 291-301. DOI: 10.1007/s11001-017-9304-9.
    [32] CANEPA G, BERGEM O, PACE N G. A new algorithm for automatic processing of bathymetric data[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 62-77. DOI: 10.1109/joe.2002.808204.
    [33] SHAW S, ARNOLD J. Automated error detection in multibeam bathymetry data[C]//Proceedings of IEEE OCEANS’93. Victoria, BC, Canada: IEEE, 1993: 89-94. DOI: 10.1109/OCEANS.1993.326072.
    [34] CALDER B R, MAYER L A. Robust automatic multi-beam bathymetric processing[C]//US Hydrographic Conference. Norfolk(VA): [s.n.], 2001: 1-20.
    [35] CALDER B R, MAYER L A. Automatic processing of high-rate, high-density multibeam echosounder data[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(6): 1048. DOI: 10.1029/2002gc000486.
    [36] CALDER B R, SMITH S. A time comparison of computer-assisted and manual bathymetric processing[J]. International Hydrographic Review, 2004, 5(1): 10-23.
    [37] NOAA. Field Procedures Manual[EB/OL]. [2017-05-02]. https://nauticalcharts.noaa.gov/publications/docs/standards-and-requirements/fpm/2014-fpm-final.pdf.
    [38] HOWLETT C. Considerations and advantages of accepting CUBE surfaces as survey deliverables[C]//Proceedings of the NSHC 29th Conference. Brest: [s.n.], 2010.
    [39] MALLACE D, GEE L. Multibeam processing-the end to manual editing?[J]. International Hydrographic Review, 2005, 6(1): 55-65.
    [40] MALLACE D, ROBERTSON P. Alternative use of CUBE: how to fit a square peg in a round hole[C]//US Hydrographic Conference 2007. Norfolk(VA): [s.n.], 2007: 1-12.
    [41] VáSQUEZ M E, NICHOLS S, CLARKE J H. Tuning the CARIS implementation of CUBE for patagonian waters[D]. Fredericton: University of New Brunswick, 2007.
    [42] PARK Y, JUNG N D, DO JANG N, et al. Performance validation of surface filter based on CUBE algorithm for eliminating outlier in multi beam echo sounding[EB/OL]. [2017-05-10]. https://www.hydrographicsociety.org/documents/hydrographicsociety.org/downloads/ifhs_news_no_1_-_yosup_park_et_al.pdf.
    [43] 王德刚, 叶银灿. CUBE算法及其在多波束数据处理中的应用[J]. 海洋学研究, 2008, 26(2): 82-88. DOI: 10.3969/j.issn.1001-909X.2008.02.012. WANG Degang, YE Yincan. The theory of CUBE algorithm and its application in the processing of multi-beam data[J]. Journal of Marine Sciences, 2008, 26(2): 82-88. DOI: 10.3969/j.issn.1001-909X.2008.02.012.
    [44] 黄辰虎, 陆秀平, 侯世喜, 等. 利用CUBE算法剔除多波束测深粗差研究[J]. 海洋测绘, 2010, 30(3): 1-5. DOI: 10.3969/j.issn.1671-3044.2010.03.001. HUANG Chenhu, LU Xiuping, HOU Shixi, et al. Study on detecting outlier of multibeam sounding based on CUBE algorithm[J]. Hydrographic Surveying and Charting, 2010, 30(3): 1-5. DOI: 10.3969/j.issn.1671-3044.2010.03.001.
    [45] 贾帅东, 张立华, 曹鸿博. 基于CUBE算法的多波束水深异常值剔除[J]. 测绘科学, 2010, 35(S1): 57-59, 94. JIA Shuaidong, Zhang Lihua, CAO Hongbo. A method for eliminating outliers of multibeam echosounder data based on CUBE[J]. Science of Surveying and Mapping, 2010, 35(S1): 57-59, 94.
    [46] 黄谟涛, 翟国君, 柴洪洲, 等. 检测多波束测深异常数据的CUBE算法模型解析[J]. 海洋测绘, 2011, 31(4): 1-4. DOI: 10.3969/j.issn.1671-3044.2011.04.001. HUANG Motao, ZHAI Guojun, CHAI Hongzhou, et al. Analysis on the mathematical models of CUBE algorithm for the detection of abnormal data in multibeam echosounding[J]. Hydrographic Surveying and Charting, 2011, 31(4): 1-4. DOI: 10.3969/j.issn.1671-3044.2011.04.001.
    [47] 王海栋, 柴洪洲. 基于CUBE算法的多波束测深数据自动处理研究[J]. 海洋通报, 2011, 30(3): 246-251. DOI: 10.3969/j.issn.1001-6392.2011.03.002. WANG Haidong, CHAI Hongzhou. Research on multibeam bathymetry data automatic processing based on CUBE algorithm[J]. Marine Science Bulletin, 2011, 30(3): 246-251. DOI: 10.3969/j.issn.1001-6392.2011.03.002.
    [48] HARE R, GODIN A, MAYER L A. Accuracy estimation of canadian swath (multibeam) and sweep (multitransducer) sounding systems[R]. Fredericton: Canadian Hydrographic Service, 1995.
    [49] SUSANA A. Error budget analysis for NAVO[EB/OL]. [2017-05-20]. http://www.academia.edu/10086841/Error_Budget_Analysis_For_NAVO.
    [50] HARE R, EAKINS B, AMANTE C. Modelling bathymetric uncertainty[J]. International Hydrographic Review, 2011, 6(1): 31-42.
    [51] International Hydrographic Organization. IHO standards for hydrographic surveys[EB/OL]. [2017--06-10]. http://www.iho.int/iho_pubs/standard/S-44_5E.pdf.
    [52] CALDER B. Automatic statistical processing of multibeam echosounder data[J]. International Hydrographic Review, 2003, 4(1): 53-68.
    [53] CALDER B R, WELLS D. CUBE user manual[M]. [s.l.]: University of New Hampshire, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700