微生物燃料电池电活化过硫酸盐降解甲基橙偶氮染料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microbial Fuel Cell Electro-Activated Persulfate to Degrade Methyl Orange Azo Dye
  • 作者:冯俊生 ; 姚海祥 ; 蔡晨 ; 王晓红 ; 张郓
  • 英文作者:FENG Junsheng;YAO Haixiang;CAI Chen;WANG Xiaohong;ZHANG Yun;School of Environmental and Safety Engineering,Changzhou University;
  • 关键词:微生物燃料电池 ; 过硫酸盐(PDS) ; 硫酸根自由基(SO4-·) ; 输出功率 ; 甲基橙
  • 英文关键词:microbial fuel cell;;persulfate(PDS);;sulfate radicals(SO4-·);;output power;;methyl orange
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:常州大学环境与安全工程学院;
  • 出版日期:2018-12-27 16:00
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.256
  • 基金:江苏省产学研前瞻性联合研究项目(No.BY2015027-06);; 江苏省高校自然科学研究面上项目(No.16KJB610001)~~
  • 语种:中文;
  • 页:HJKX201905023
  • 页数:8
  • CN:05
  • ISSN:11-1827/X
  • 分类号:195-202
摘要
为研究MFC (微生物燃料电池)产生电能活化PDS (过硫酸盐)对偶氮染料的降解能力,以MO (甲基橙)为目标污染物,探讨pH、c(PDS)、初始c(MO)、无机阴离子等对MO降解的影响及降解机理.结果表明:①当pH为3~5时,MO降解率随pH降低而升高;当pH低于3时,MO降解率随pH的降低而降低; MO降解率随初始c(MO)的增大而降低.当c(PDS)为1~2 mmol/L时,MO降解率随c(PDS)增加而增大;当c(PDS)超过2 mmol/L后呈减小趋势.②最佳反应条件〔pH为3、初始c(MO)为0. 10mmol/L、c(PDS)为2 mmol/L〕下,反应4 h后MO降解率可达86. 5%.③无机阴离子HCO3-、NO3-、CO32-对MO降解存在抑制作用,当阴离子投加量为10 mmol/L时,降解率分别为64. 2%、68. 8%、76. 1%,而Cl-对MO降解无显著影响.④淬灭试验表明,体系的主要活性物质为SO4-·及少量·OH.⑤通过紫外-可见光谱扫描,依据MO结构与特征吸收峰的关系,推测MO降解途径,即MO发色基团偶氮双键断裂,生成含苯环类中间产物,最终矿化为CO2和H2O.研究显示,MFC能有效活化PDS产生SO4-·,对偶氮染料有较好的降解和矿化效果.
        In order to study the degradation of azo dyes by bio-activated persulfate(PDS) produced by the microbial fuel cell(MFC),methyl orange(MO) was selected as the target pollutant. The effects of pH,PDS concentration,initial MO concentration,and inorganic anions on the degradation of MO were investigated. The results showed that when the initial pH was in the range of 5 to 3,the removal rate of MO increased with the decreasing pH. When the initial pH was lower than 3,the removal rate decreased with the decreasing pH. The removal rate of MO decreased with the increasing initial concentration of MO. When the dosage of PDS was 1-2 mmol/L,the MO removal rate increased with the increasing PDS dosage. When PDS dosage exceeded 2 mmol/L,the removal rate decreased with the increasing PDS dosage. The optimal reaction conditions were as follows: initial pH = 3,initial concentration of MO = 0. 10 mmol/L,dosage of PDS = 2 mmol/L. MO removal efficiency reached 86. 5% after 4 h. The inorganic anions had inhibitory effect on the removal of MO. When the dosage of each inorganic anion(HCO3-,NO3-,CO32-) was 10 mmol/L,the removal rates of MO were 64. 2%,68. 8% and 76. 1%,respectively. But the removal of MO was not significantly affected by Cl-. Quenching experiments showed that the main free radicals in the system were SO4-·and a small amount of·OH. According to the relationship between MO structure and characteristic absorption peaks obtained with UV-Vis spectroscopy,the pathway of MO degradation was inferred. The azo double bond structure of MO chromophore was broken. Then intermediates containing benzene rings were formed,and finally they were mineralized to form CO2 and H2 O. These results showed that MFC could effectively activate persulfate to produce sulfate radicals. They had better removal and mineralization effects on azo dyes.
引文
[1] LANG Chenju,LEE I,HSU I,et al. Persulfate oxidation of trichloroethylene with and without iron activation in porous media[J].Chemosphere,2008,70(3):426-435.
    [2] GAO Yuqiong,GAO Naiyun,DENG Yang,et al.Ultraviolet(UV)light-activated persulfate oxidation of sulfamethazine in water[J].Chemical Engineering Journal,2012,195:248-253.
    [3] ZHANG Botao,ZHANG Yang,TENG Yangguo,et al.Sulfate radical and its application in decontamination technologies[J]. Critical Reviews in Environmental Science and Technology,2015,45(16):1756-1800.
    [4] LIU Lin,LIN Sen,ZHANG Wei,et al. Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heatactivated persulfate oxidation process[J]. Chemical Engineering Journal,2018,346:515-524.
    [5] WANG Chiwei,LIANG Chenju. Oxidative degradation of TMAH solution with UV persulfate activation[J]. Chemical Engineering Journal,2014,254:472-478.
    [6] LOMINCHA M A,SANTOS A,ROMERO A,et al.Remediation of aged diesel contaminated soil by alkaline activated persulfate[J].Science of the Total Environment,2018,622:41-48.
    [7] GAO Feng,LI Yijiu,XIANG Bo,et al.Degradation of bisphenol A through transition metals activating persulfate process[J].Ecotoxicology and Environmental Safety,2018,158:239-247.
    [8] LIU Jialu,ZHONG Shuang,SONG Yunpeng,et al. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation[J].Journal of Electroanalytical Chemistry,2018,809:74-79.
    [9] CHEN Wenshing,JHOU Y C,HUANG Chipin,et al.Mineralization of dinitrotoluenes in industrial wastewater by electro-activated persulfate oxidation[J]. Chemical Engineering Journal,2014,252:166-172.
    [10] LI Yifu,YUAN Xingzhong,WU Zhibin,et al.Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process[J]. Chemical Engineering Journal,2016,303:636-645.
    [11] JEFFERSON E,SILVEIRA,ALICIA L,et al.Indirect decolorization of azo dye disperse blue 3 by electro-activated persulfate[J].Electrochimica Acta,2017,258:927-932
    [12] HE Li,DU Peng,CHEN Yizhong,et al.Advances in microbial fuel cells for wastewater treatment[J]. Renewable and Sustainable Energy Reviews,2017,71:388-403.
    [13]付宁,黄丽萍,葛林科,等.微生物燃料电池在污水处理中的研究进展[J].环境污染治理技术与设备,2006,7(12):10-14.FU Ning,HUANG Liping,GE Linke,et al. Research progress in microbial fuel cell for wastewater treatment[J]. Technjques and Equipment for Environmental Pollution Control,2006,7(12):10-14.
    [14] HASSAN H,JIN B,DAI S,et al.Chemical impact of catholytes on bacillus subtilis-catalysed microbial fuel cell performance for degrading 2,4-dichlorophenol[J]. Chemical Engineering Journal,2016,310:103-114.
    [15] YAN Suding,XIONG Weihui,XING Shuya,et al. Oxidation of organic contaminant in a self-driven electro/natural maghemite/peroxydisulfate system:efficiency and mechanism[J]. Science of the Total Environment,2017,599:1181-1190.
    [16] LI Jun,FU Qian,LIAO Qiang,et al. Persulfate:a self-activated cathodic electron acceptor for microbial fuel cells[J]. Journal of Power Sources,2009,194:269-274.
    [17]郭璇,詹亚力,郭绍辉,等.炼厂含油污水微生物燃料电池的启动及性能研究[J].高校化学工程学报,2013,27(1):159-163.GUO Xuan,ZHAN Yali,GUO Shaohui,et al.Study on start-up and performance of microbial fuel cell with refinery wastewater as fuel[J]. Journal of Chemical Engineering of Chinese Universities,2013,27(1):159-163.
    [18]李霞.还原铁粉和活性炭活化过硫酸钠处理MO废水的试验研究[D].郑州:郑州大学,2017:15-16.
    [19]骆靖宇,李学艳,李青松,等.紫外活化过硫酸钠去除水体中的三氯卡班[J].中国环境科学,2017,37(9):3324-3331.LUO Jingyu,LI Xueyan,LI Qingsong,et al. Degradation of triclocarban aqueous solution through UV irradiation-activated sodium persulfate process[J].China Environmental Science,2017,37(9):3324-3331.
    [20] LIU Liang,LI Fangbai,FENG Chunhua,et al. Microbial fuel cell with an azo-dye-feeding cathode[J]. Applied Microbiology and Biotechnology,2009,85:175-183.
    [21] CHEN Wenshing,HUANG Chipin. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate[J].Chemosphere,2015,125:175-181.
    [22]顾小钢,吕树光,徐曼辉,等.紫外活化过硫酸钠技术处理水溶液中的1,1,1-三氯乙烷[J].环境科学研究,2012,25(12):1393-1397.GU Xiaogang,LU Shuguang,XU Manhui,et al. UV Activated persuifate technique for 1,1,1-trichloroethane degradation in aqueous soiution[J].Research of Environmental Sciences,2012,25(12):1393-1397.
    [23]吴君豪.pH值对高锰酸钾作阴极的微生物燃料电池阴极电位的影响[J].云南化工,2017,44(8):62-65.WU Junhao.Effect of p H on cathodic potential of microbial fuel cell with potassium potassium permanganate as cathode[J]. Yunnan Chemical Technology,2017,44(8):62-65.
    [24]郭佑罗,关小红,高乃云,等.紫外/PDS工艺降解水中氯贝酸的研究[J].中国环境科学,2016,36(7):2014-2019.GUO Youluo,GUAN Xiaohong,GAO Naiyun,et al. Kinetics of clofibric acid degradation by UV/persulfate system in aqueous solution[J]. China Environmental Science,2016,36(7):2014-2019.
    [25]金春姬,于辉,刘明,等.利用PDS阴极型微生物燃料电池降解蒽醌燃料活性艳蓝的研究[J].中国海洋大学学报,2015,45(4):85-94.JIN Chunji,YU Hui,LIU Ming,et al. Decolorization of an anthraquinone dye reactive brilliant blue KN-R in microbial fuel cells using ferrous catalyzed persulfate[J]. Periodical of Ocean University of China,2015,45(4):85-94.
    [26]付乾,李俊,廖强,等.过硫酸钾为电子受体的微生物燃料电池性能特性[J].工程热物理学报,2009,30(8):1396-1398.FU Qian,LI Jun,LIAO Qiang,et al. Performance of a MFC using potassium persulfate as cathodic electron acceptor[J]. Journal of Engineering Thermophysics,2009,30(8):1396-1398.
    [27] LUTZE H V,KERLIN N,SCHMIDT T C,et al. Sulfate radicalbased water treatment in presence of chloride:formation of chlorate,inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J]. Water Research,2015,72:349-360.
    [28] YUAN Ruixia,RAMJAUN S N,WANG Zhaohui,et al. Effects of chloride ion on degradation of acid orange 7 by sulfate radical based advanced oxidatio process:implications for formation of chlorinated aromatic compounds[J].Journal of Hazardous Materials,2011,196(1):173-179.
    [29]毕晨,施周,周石庆,等.EGCG强化Fe2+/PDS体系降解金橙G的研究[J].中国环境科学,2017,37(10):3722-3728.BI Chen,SHI Zhou,ZHOU Shiqing,et al. Degradation of orange G by Fe2+/peroxydisulfate system with enhance of EGCG[J]. China Environmental Science,2017,37(10):3722-3728.
    [30] HAN Jing,ZENG Hongyan,XU Sheng,et al.Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange[J].Applied Catalysis A:General,2016,527:72-80.
    [31]尹汉雄,唐玉朝,黄显怀,等.紫外光强化Fe(Ⅱ)-EDTA活化PDS降解直接耐酸大红4BS[J].环境科学研究,2017,30(7):1105-1111.YIN Hanxiong, TANG Yuchao, HUANG Xianhuai, et al.Decolorization effect of direct fast scarlet 4BS by Fe(Ⅱ)-EDTA activated peroxodisulfate under ultraviolet light[J]. Research of Environmental Sciences,2017,30(7):1105-1111.
    [32]胡嘉敏,张静,袁琳,等.紫外强化铜循环催化PDS降解MO[J].环境科学研究,2018,31(1):123-129.HU Jiamin,ZHANG Jing,YUAN Lin,et al. Degradation of methyl orange via enhancing the copper-redox cycle to catalyze peroxomonosulfate by UV irradiation[J]. Research of Environmental Sciences,2018,31(1):123-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700