基于双程放大的毛细管放电69.8 nm激光增益特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge based on double-pass amplification
  • 作者:刘涛 ; 赵永蓬 ; 崔怀愈 ; 刘晓琳
  • 英文作者:Liu Tao;Zhao Yong-Peng;Cui Huai-Yu;Liu Xiao-Lin;College of Electronic Information and Automation,Civil Aviation University of China;National Key Laboratory of Science and Technology on Tunable Laser,Harbin Institute of Technology;
  • 关键词:毛细管放电 ; 69.8 ; nm激光 ; 双程放大 ; 增益介质
  • 英文关键词:capillary discharge;;69.8 nm laser;;double-pass amplification;;gain medium
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国民航大学电子信息与自动化学院;哈尔滨工业大学可调谐激光技术国家级重点实验室;
  • 出版日期:2019-01-04 14:40
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61875045);; 天津市自然科学基金(批准号:17JCYBJC18200)资助的课题~~
  • 语种:中文;
  • 页:WLXB201902020
  • 页数:6
  • CN:02
  • ISSN:11-1958/O4
  • 分类号:179-184
摘要
建立了类氖氩C线69.8 nm激光的双程放大实验后反射腔结构,利用45 cm长毛细管作为放电负载得到了其双程放大输出.在相同初始实验条件下,分别测量了单程放大输出与双程放大输出的激光脉冲光强、脉冲宽度以及激光束散角.通过对比单程与双程输出实验结果,利用双程放大激光光强的计算公式,分析得到了增益持续时间大于4 ns,以及增益在毛细管径向上的分布特点.以上结果为建立谐振腔进行毛细管放电类氖氩激光的多程放大实验奠定了基础.
        In this paper, a double-pass amplification experiment of a Ne-like Ar C line 69.8 nm laser is established.The 45-cmlong capillary is used as the discharge load to obtain a double-pass amplification output of a Ne-like Ar C line 69.8 nm laser. Under the same initial experimental conditions that the initial pressure is 15.4 Pa and the main pulse current amplitude is 13.5 kA, the laser pulse intensity and the full width at half maximum(FWHM) of the laser pulse of the single-pass amplification output and the double-pass amplification output are measured by a vacuum X-ray diode(XRD) behind a vacuum ultraviolet(VUV) monochromator(Acton VSN-515) which is used to disperse the extreme ultraviolet(EUV) emission. And then the laser beam divergence of single-pass amplification output and double-pass amplification output are also measured by a space-resolving flat-field EUV spectrograph combined with an EUV CCD(Andor Newton DO920P-BN). The amplitude of the double-pass amplification laser output is 9 times larger than that of single-pass amplification output, and the FWHM of the double-pass amplification laser pulse is nearly 2.4 ns. While the laser beam divergence angle of the double-pass amplification output is 6.6 times wider than that of single-pass amplification output. By comparing the single-pass amplification and double-pass amplification output experimental results, the gain duration of the gain medium in the double-pass amplification and the radial distribution characteristics of the gain medium are analyzed by using the calculation formula of the double-pass amplification laser intensity. The gain duration is more than 4 ns, during this time the gain coefficient decreases at 1.6 ns. And the gain coefficient is the smallest at 2.8 ns, meanwhile the intensity of the single-pass amplification laser is maximum,and the gain medium is in the gain saturation state. So this result indicates that the minimum gain coefficient at this moment is due to the gain saturation effect. Using a similar calculation method to analyze the spatial distribution of gain coefficients, the gain on the plasma axis is larger than that off the plasma axis. These results lay a foundation for the subsequent establishment of resonant cavity and the multi-pass amplification experiment of capillary discharge Ne-like Ar laser.
引文
[1] Carbajo S, Howlett I D, Brizuela F, Buchanan K S, Marconi M C 2012 Opt. Lett. 37 2994
    [2] Nejdl J, Howlett I D, Carlton D, Anderson E H, Chao W,Marconi M C, Rocca J J, Menoni C S 2015 IEEE Photon. J.7 1
    [3] Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D,Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192
    [4] Zhao Y P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y,Wang Q 2011 Opt. Lett. 36 3458
    [5] Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022
    [6] Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D1997 Phys. Rev. A 55 1437
    [7] Elton R C, Datla R U, Roberts J R, Bhatia A K 1989 Phys.Rev. A 40 4142
    [8] Bernstein E R, Dong F, Guo Y Q, Shin J W, Heinbuch S,Rocca J J 2016 X-Ray Laser(Switzerland:Springer)p359
    [9] Menoni C S, Nejdl J, Monserud N, Howleet I D, Carlton D,Anderson E H, Chao W, Marconi M C, Rocca J J 2016 XRay Laser 2014(Switzerland:Springer)p259
    [10] Suckewer S, Skinner C H, Milchberg H, Keane C, Voorhee D1985 Phys. Rev. Lett. 55 1753
    [11] Ceglio N M, Gaines D P, Trebes J E, London R A, Stearns D G 1988 Appl. Opt. 27 5022
    [12] Murai K, Yuan G, Kodama R, Daido H, Kato Y, Niibe M,Miyake A, Tsukamoto M, Fukuda Y, Neely D, Macphee A G1994 Jpn. J. Appl. Phys. 33 L600
    [13] Carillon A, Chen H Z, Dhez P, Dwivedi L, Jacoby J, Jaegle P, Jamelot G, Zhang J, Key M H, Kidd A, Klisnick A,Kodama R, Krishnan J, Lewis C, Neely D,Norreys P,O'Neill D, Pert G J, Ramsden S, Raucourt J P,Tallents G,Uhomoibhi J O 1992 Phys. Rev. Lett. 68 2917
    [14] He S T, Chunyu S T, Zhang Q R, He A, Shen H Z, Ni Y L,Yu S Y 1992 Phys. Rev. A 46 1610
    [15] An H H, Wang C, Fang Z H, Xiong J, Sun J R, Wang W, Fu S Z, Qiao X M, Zheng W D, Zhang G P 2011 Acta Phys. Sin.60 104207(in Chinese)[安红海,王深,方智恒,熊俊,孙今人,王伟,傅思祖,乔秀梅,郑无敌,张国平2011物理学报60104207]
    [16] Ceglio N M, Gaines D P, Stearns D G, Hawryluk A M 1989Opt. Commun. 69 285
    [17] Rus B, Mocek T, Prag A R, Kozlova M, Jamelot G, Carillon A, Ros D, Joyeux D, Phalippou D 2002 Phys. Rev. A 66063806
    [18] Rocca J J, Clark D P, Chilla J L A, Shlyaptsev V N 1996Phys. Rev. Lett. 77 1476
    [19] Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett.41 3779
    [20] Rus B, Carillon A, Dhez P, Jaegle P, Jamelot G, Klisnick A,Nantel M, Zeitoun P 1997 Phys. Rev. A 55 3858
    [21] Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L 2016Appl. Phys. B 122 107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700