易碎Be靶丸表面精密抛光技术与理论分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface Precision Polishing Technique and Theory Analysis for Fragile Be Capsule
  • 作者:李文琦 ; 张建波 ; 李恺 ; 马小军 ; 罗炳池 ; 蒋晓东 ; 吴卫东 ; 戴亚平
  • 英文作者:LI Wen-qi;ZHANG Jian-bo;LI Kai;MA Xiao-jun;LUO Bing-chi;JIANG Xiao-dong;WU Wei-dong;DAI Ya-ping;Research Center of Laser Fusion,China Academy of Engineering Physics;Science and Technology on Plasma Physics Laboratory,China Academy of Engineering Physics;
  • 关键词:精密抛光 ; 无规行走 ; 表面粗糙度 ; 铍靶丸
  • 英文关键词:precision polishing;;random walk;;surface roughness;;beryllium capsule
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中国工程物理研究院激光聚变研究中心;中国工程物理研究院等离子体物理重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(11805176);; 中物院超精密加工技术重点实验室基金(ZZ15011)~~
  • 语种:中文;
  • 页:BMJS201905041
  • 页数:6
  • CN:05
  • ISSN:50-1083/TG
  • 分类号:298-303
摘要
目的建立一种新的易碎空心微球抛光机模型,并研制出该样机,用于空心Be微球的精密抛光。方法采用限位孔设计解决微球低应力夹持问题,添加不同数量的配重球,用于调整待抛球的滑动摩擦力大小和防止其飞出限位孔。上下盘偏心放置,实现微球无规运动。采用白光干涉仪分析抛光后Be微球的表面粗糙度。结果抛光机模型计算表明,待抛球一直在做周期性的变速和变加速运动,其周期大小由上盘转动频率决定,变加速运动增加了微球的滑动摩擦成分,有利于提高微球抛光效率。此外,待抛球表面抛光轨迹呈现无规行走,这有利于抛光的均匀性。使用该原理抛光机,在24 h内能够将直径1.2 mm、均方根表面粗糙度510 nm的易碎铍(Be)靶丸抛光至85 nm。结论理论和实验共同验证了易碎微球抛光机模型的合理性和可行性,上下盘放置方式、限位孔大小设计和配重球数量等关系着易碎微球的抛光均匀性和抛光效率。
        To establish a new model of polishing machine for friable hollow capsule(invention patent ZL201510335040.6),and develop a prototype for the precise polishing of hollow Be capsules. The restriction hole design was used to solve the problem of low stress clamping of sphere. Different numbers of counterweight spheres were added to adjust the sliding friction force and prevent the spheres from flying out of the restriction hole. The upper and lower grinding pans were placed eccentrically to achieve random movement of the spheres. The surface roughness of the polished Be capsules was analyzed by white light interferometer. The model calculation shows that the unpolished spheres always roll periodically in the mode of variable speed and variable acceleration. The periodicity is determined by the rotation frequency of the top pan. The spheres of variable acceleration motion increase the sliding friction components and are beneficial to improving the polishing efficiency. In addition, the surface polishing trajectory presents random walk, which can ensure the polishing uniformity. The fragile beryllium(Be) capsule with a diameter of 1.2 mm and a root mean square surface roughness of 510 nm can be polished to 85 nm in 24 hours by this polishing machine. The rationality and feasibility of the fragile sphere polishing machine model are verified by both theory and experiment. The polishing uniformity and polishing efficiency of fragile spheres are closely related to the placement mode of upper and lower grinding pans, the size of restriction hole and the number of counterweight spheres.
引文
[1]张占文,漆小波,李波.惯性约束聚变点火靶候选靶丸特点及制备研究进展[J].物理学报,2012,61(14):300-307.ZHANG Zhan-wen,QI Xiao-bo,LI Bo.Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments[J].Acta physica sinica,2012,61(14):300-307.
    [2]罗炳池,李恺,何玉丹,等.Be靶丸的研制进展及其关键技术[J].强激光与粒子束,2013,25(12):3259-3264.LUO Bing-chi,LI Kai,HE Yu-dan,et al.Fabrication progress and key technologies of Be targets[J].High power laser and particle Beams,2013,25(12):3259-3264.
    [3]LUO B C,LI K,KANG X L,et al.Sputtering pressures influence on growth morphology,surface roughness and electrical resistivity for strong anisotropy beryllium films[J].Chinese physics B,2014,23(6):457-461.
    [4]HAAN S W,HERRMANN M C,AMENDT P A.Update on specifications for NIF ignition targets,and their rollup into an error budget[J].Fusion science and technology,2006,49:553-557.
    [5]XU H W,ALFORD C S,COOLEY J C,et al.Beryllium capsule coating development for NIF targets[J].Fusion science and technology,2007,51(4):547-552.
    [6]MORENO K A,EDDINGER S,FONG J.Overview of national ignition facility capsule metrology[J].Fusion science and technology,2009,55(4):349-355.
    [7]HANN S W,CALLAHAN D A,EDWARDS M J.Rev3update of requirements for NIF ignition targets[J].Fusion Science and Technology,2009,55(3):227-232.
    [8]赵兴科,王中,郑玉峰,等.抛光技术的现状[J].表面技术,2000,29(2):6-7.ZHAO Xing-ke,WANG Zhong,ZHENG Yu-feng,et al.The status of polishing technique[J].Surface technology,2000,29(2):6-7.
    [9]林广川,郭丹,解国新,等.抛光液中离子浓度对化学机械抛光过程的影响[J].中国表面工程,2015,28(4):54-61.LIN Guang-chuan,GUO Dan,XIE Guo-xin,et al.Influence of ionic concentration of slurry on process of chemical mechanical polishing[J].China surface engineering,2015,28(4):54-61.
    [10]MING J,KOMANDURI R.On the finishing of Si3N4spheres for bearing applications[J].Wear,1998,215:267-278.
    [11]WANG Xing,ZHANG Yong,ZHANG Fei-hu,et al.Preliminary investigation on nanoparticle colloid hydrodynamic cavitation jet polishing technology[J].Nanotrchnology and precision engineering,2011,9(6):483-487.
    [12]冯凯萍,吕冰海,邓乾发,等.氧化硅陶瓷球双平面抛光技术[J].轴承,2013(3):11-15.FENG Kai-ping,LV Bing-hai,DENG Qian-fa,et al.Dual-plane polishing technology for silicon nitride ceramic[J].Bearing,2013(3):11-15.
    [13]HOPPE M L,CASTILLO E.Polishing of beryllium capsules to meet NIF specifications[J].Journal de physique IV,2006,133:895-898.
    [14]GALE W F,TOTEMEIER T C.Smithells Metals Reference Book[M].Oxford:Elsevier Butterworth-Heinemann Ltd,2004:14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700