六种木本植物对铅锌尾矿库重金属富集力的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heavy metal transfer capability of six woody plants in lead-zinc mine area
  • 作者:张轩 ; 赵俊程 ; 吴子剑 ; 黄忠良 ; 刘健 ; 徐佳娈 ; 覃晓莉 ; 李辉
  • 英文作者:ZHANG Xuan;ZHAO Juncheng;WU Zijian;HUANG Zongliang;LIU Jian;XU Jialuan;QIN Xiaoli;LI Hui;Hunan Academy of Forestry;College of Biology,Hunan University;Hunan Agricultural University;
  • 关键词:铅锌矿 ; 植物修复 ; 木本植物 ; 富集能力 ; 转运特征
  • 英文关键词:lead-zinc mine;;phytoremediation;;woody plants;;bioaccumulation capability;;transfer characteristics
  • 中文刊名:HLKJ
  • 英文刊名:Hunan Forestry Science & Technology
  • 机构:湖南省林业科学院生物与环境工程研究所;湖南大学生物学院;湖南农业大学;
  • 出版日期:2016-12-15
  • 出版单位:湖南林业科技
  • 年:2016
  • 期:v.43
  • 基金:湖南林业科技计划(XLK201553);湖南林业科技计划(XLK201552);; 湖南省林业科技计划(XLB201503)
  • 语种:中文;
  • 页:HLKJ201606015
  • 页数:5
  • CN:06
  • ISSN:43-1096/S
  • 分类号:68-72
摘要
通过对湖南省资兴市某已闭库并实施生态修复的铅锌尾矿库及周边受污染土壤和植物的采样分析,以ICP—ASE电感耦合等离子体发射光谱法测定了杉木、杨树、栾树、泡桐、香樟和乌桕等6种木本植物中Pb、Zn、Cu和Cd等重金属元素的含量,并运用转运系数和富集系数分析了植物相应的富集能力与转运特征。结果表明:6种植物中,对Pb富集系数最大的为乌桕,达到0.029;对Zn富集系数最大的为泡桐,达到0.374;栾树对Pb的转运系数达到1.314;泡桐对于Zn的转运系数达到1.452。6种植物均能适应铅锌重度污染的生长环境,其中乌桕、泡桐、栾树富集和转运Pb、Zn能力突出,适宜作为铅锌矿区植物修复的主要木本树种。
        The bioaccumulation capability and transfer characteristics of Pb,Zn,Cu and Cd in soil and 6 different woody plants collected from a typical lead-zinc mine wasteland of Zixing City,Hunan province were investigated,including Cunninghamia lanceolata( Lamb.) Hook.,Populus L.,Koelreuteria paniculata,Paulownia.,Cinnamomum camphora( L.) Presl.,and Sapium sebiferum( L.) Roxb. The results showed that the 6 plants could adapt to the heavy metal polluted environment,and there was a positive correlation between the heavy metal content in plants and soil. S. sebiferum( L.) Roxb. had the largest Pb bioaccumulation factor of 0. 029; Paulownia. had the highest Zn bioaccumulation factor of0. 374; the largest Pb transfer factor of 1. 314 were found in K. paniculata; and Zn transfer factor of Paulownia. reached1. 452. These 3 woody plants are suitable for phytoremediation of lead-zinc mine.
引文
[1]王向健,郑玉峰,赫冬青.重金属污染土壤修复技术现状与展望[J].环境保护科学.2004(2):48-49.
    [2]Brooks R R.Plants that hyperaccumulate heavy metals.[J]CAB International,1989,1-2.
    [3]Baker A J M,Proctor J.The influence of cadmium,copper,lead and zinc on the distribution and evolution ofmetallophytes in the British Isles[J].Plant System Evolution,1990,173:91-108.
    [4]骆永明.重金属污染土壤的植物修复[J].土壤,1999(6):261-280.
    [5]李思亮,杨斌,陈燕,等.浙江省铅锌矿区土壤重金属污染及重金属超富集植物筛选[J].环境污染与防治,2016,38(5):48-54
    [6]罗忠,文仕知,刘虹.枫香人工林根系重金属元素含量的季节变化[J].湖南林业科技,2015(05):6-9.
    [7]王旭军,吴际友,程勇,等.铅胁迫对4种行道树生长的影响[J].湖南林业科技,2011,38(5):34-38.
    [8]唐璨.郴州年鉴[M].北京:中州古籍出版社,2015.
    [9]国家固体危险废物鉴别标准(GB5085.3-2007)[S].2007.
    [10]彭杰,张杨珠,周清,等.湖南省几种主要类型土壤反射光谱的剖面变化特性[J].土壤通报,2006,4(2):236-240.
    [11]潘佑民.湖南土壤背景值及研究方法[M].北京:中国环境科学出版社,1988.
    [12]Eliana L.Tassi,Francesca Pedron,Meri Barbafieri.Evaluating the Absorption of Boron by Plants—A Potential Tool to Remediate Contaminated Sediments from Cecina River Basin in Italy[J].Water,Air,&Soil Pollution,2011,216(1-4):275-287.
    [13]García,M.á.,Alonso,J.,&Melgar,M.J.Lead in edible mushrooms:levels and bioaccumulation factors[J].Journal of Hazardous Materials,2009,167(1–3):777–783.
    [14]Melgar,M.J.,Alonso,J.,&García,M.A.Mercury in edible mushrooms and underlying soil:bioconcentration factors and toxicological risk[J].Science of the Total Environment,2009,407(20),5328–5334.
    [15]Nicoletta,R.,Flavia,N.I,Heavy metal hyperaccumulating plants:How and why do they do it?And what makes them so interesting?[J].Plant Science,2011,180(2):169-180
    [16]石润,吴晓芙,李芸,等.应用于重金属污染土壤植物修复中的植物种类[J].中南林业科技大学学报,2015,35(4):139-146.
    [17]陈永华,吴晓芙,郝君,等.4种木本植物在潜流人工湿地环境下的适应性与去污效果[J].生态学报,2014,34(4):916-924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700