水平轴海流能发电机组水动力载荷模拟方法的比较研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:COMPARATIVE STUDY ON SIMULATION METHODS OF HYDRODYNAMIC LOAD IN HORIZONTAL AXIS MARINE CURRENT TURBINE
  • 作者:徐全坤 ; 刘宏伟 ; 李明辉 ; 李伟 ; 林勇刚
  • 英文作者:Xu Quankun;Liu Hongwei;Li Minghui;Li Wei;Lin Yonggang;The State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University;Guodian United Power Technology Co.,Ltd.;
  • 关键词:海流发电 ; 水平轴 ; 水动力载荷 ; BEM理论 ; 数值模拟 ; 比较研究
  • 英文关键词:marine current generation;;HAMCT;;hydrodynamic load;;BEM theory;;numerical simulation;;comparative study
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:浙江大学流体动力与机电系统国家重点实验室;国电联合动力技术有限公司;
  • 出版日期:2015-11-28
  • 出版单位:太阳能学报
  • 年:2015
  • 期:v.36
  • 基金:国家自然科学基金(51105330),国家自然科学基金创新研究群体科学基金(51221004);; 国家高技术研究发展(863)计划(2011AA050201)
  • 语种:中文;
  • 页:TYLX201511035
  • 页数:7
  • CN:11
  • ISSN:11-2082/TK
  • 分类号:231-237
摘要
以所研发的25 k W水平轴海流能发电机组为对象,分别通过基于叶素动量(BEM)理论的GH-Bladed软件分析方法和基于有限元建模(FEM)理论的计算流体力学(CFD)数值模拟分析方法,对水平海流发电机组的水动力学性能进行理论分析及软件建模,并对两种分析方法的结果进行对比讨论。分析结果表明,海流流速在机组额定流速附近时,两种方法得到的机组能量捕获效率和推力系数均较接近。当海流流速较高于机组额定流速时,两种方法得到的结果出现明显差异,差异的原因在于CFD方法考虑了海流沿叶轮半径方向的径向流动,而BEM方法未考虑此因素。两种方法的比较研究为水平轴海流能发电机组水动力载荷的后续试验研究提供了理论依据。
        Two methods were used to simulate the hydrodynamic performance of a developed 25 k W horizontal axismarine current turbine(HAMCT). These two methods are GH-Bladed tool based on BEM theory and the numericalmodeling simulation tool CFD based on FEM,respectively. The simulation results of the two analysis methods werediscussed comparatively. When the current speed is around the rated current speed of the turbine,the results of the twomethods are very similar. However,when the current speed is much higher than the rated,the results of the two methodsare quite different,the CFD has considered the radial flow of the rotor,but the BEM method has not considered it. Thecomparative study of these two methods have provide theory support for the following experiment analysis.
引文
[1]Ng K W,Lam W H,Ng K C.2002-2012:10 years of research progress in horizontal-axis marine current turbines[J].Energies,2013,6(3):1497-526.
    [2]游亚戈,李伟,刘伟民,等.海洋能发电技术的发展现状与前景[J].电力系统自动化,2010,34(14):1-12.[2]You Yage,Li Wei,Liu Weimin,et al.Development status and perspective of marine energy conversion systems[J].Automation of Electric Power Systems,2010,34(14):1-12.
    [3]Ben E S,Benbouzid M,Charpentier J F.Marine tidal current electric power generation technology:State of the art and current status[A].Electric Machines&Drives Conference[C],Antalya,Turkey,2007.
    [4]Pinon G,Mycek P,Germain G,et al.Numerical simulation of the wake of marine current turbines with a particle method[J].Renewable Energy,2012,46:111-126.
    [5]Jo Chul hee,Yim Jin young,Lee Kang hee,et al.Performance of horizontal axis tidal current turbine by blade configuration[J].Renewable Energy,2012,42:195-206.
    [6]Bahaj A S,Molland A F,Chaplin J R,et al.Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank[J].Renewable Energy,2007,32(3):407-426.
    [7]Bahaj A S,Myers L E.Fundamentals applicable to the utilisation of marine current turbines for energy production[J].Renewable Energy,2003,28(14):2205-2211.
    [8]Burton T,Jenkins N,Sharpe D,et al.Wind energy handbook[M].Chichester:John Wiley&Sons,2011,52-57.
    [9]Bossanyi E A.GH Bladed user manual[M].Garrad Hassan and Partners Ltd,2009,22-27.
    [10]Bossanyi E A.GH Bladed theory manual[M].Garrad Hassan and Partners Ltd,2003,5-12.
    [11]侯国祥,孙江龙,王先洲,等.工程流体力学[M].北京:机械工业出版社,2006,51-76.[11]Hou Guoxiang,Sun Jianglong,Wang Xianzhou,et al.Engineering fluid mechanics[M].Beijing:China Machine Press,2006,51-76.
    [12]Malki R,Williams A J,Croft T N,et al.A coupled blade element momentum-Computational fluid dynamics model for evaluating tidal stream turbine performance[J].Applied Mathematical Modeling,2013,37(5):3006-3020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700