海洋大气环境下钢筋混凝土梁的时变性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Time-dependent behavior of RC beams under marine atmospheric environment
  • 作者:叶志文 ; 张伟平 ; 顾祥林
  • 英文作者:YE Zhiwen;ZHANG Weiping;GU Xianglin;Key Laboratory of Performance Evolution and Control for Engineering Structures of the Ministry of Education,Tongji University;
  • 关键词:钢筋混凝土梁 ; 锈蚀 ; 箍筋 ; 破坏模式转变 ; 剪切性能 ; 时变性能
  • 英文关键词:RC beam;;corrosion;;stirrup;;change of failure mode;;shear behavior;;time-dependent performance
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:同济大学工程结构服役性能演化与控制教育部重点实验室;
  • 出版日期:2018-10-24 10:13
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51578402)
  • 语种:中文;
  • 页:JZJB201901010
  • 页数:8
  • CN:01
  • ISSN:11-1931/TU
  • 分类号:78-85
摘要
箍筋位于纵筋外侧,往往更早发生锈蚀而且锈蚀更加严重,使梁的剪切性能比弯曲性能退化更快,梁的破坏模式可能由未锈时的弯曲破坏转为锈蚀后的剪切破坏。通过对海洋大气环境下钢筋混凝土梁的时变性能进行分析,研究了锈蚀梁承载力退化和破坏模式转换,并分析起锈时间、箍筋直径和混凝土强度等因素的影响。分析结果表明:随着服役时间的增加,梁中箍筋会先于纵筋发生锈蚀,从而使梁的破坏模式从弯曲破坏向剪切破坏转换;延长钢筋起锈时间、增大箍筋直径、提高混凝土强度均能延缓梁的受力性能退化,并延缓锈蚀梁破坏模式转换的时间。
        Corrosion of stirrups is always more severe than that of longitudinal steel bars, leading to possible shear failure instead of bending failure. This paper presents a study conducted by the authors on the effects of stirrup corrosion on the shear behavior of reinforced concrete beams. On this basis, the time-dependent behavior of RC beams in marine atmosphere was analyzed, and the degradation of bearing capacity and failure modes of the corroded beams were discussed. The influences of corrosion initiation time, stirrup diameter and concrete strength were also analyzed. The results show that with the increase of service time, the stirrups in the beam corrode before the longitudinal steel bars, which causes shear failure instead of bending failure. The degradation of structural behavior and the change of failure mode can be delayed by extending the corrosion initiation time, increasing the stirrup diameter and the concrete strength.
引文
[1] HIGGINS C, FARROW W C. Tests of reinforced concrete beams with corrosion-damaged stirrups[J]. ACI Structural Journal, 2006,103(1):133-141.
    [2] VAL D V. Deterioration of strength of RC beams due to corrosion and its influence on beam reliability[J]. Journal of Structural Engineering, 2007,133(9):1297-1306.
    [3] CORONELLI D, GAMBAROVA P. Structural assessment of corroded reinforced concrete beams: modeling guidelines[J]. Journal of Structural Engineering, 2004,130(8):1214-1224.
    [4] VIDAL T, CASTEL A, FRAN?OIS R. Analyzing crack width to predict corrosion in reinforced concrete[J]. Cement and Concrete Research, 2004,34:165-174.
    [5] VAL D V, CHERNIN L. Serviceability reliability of reinforced concrete beams with corroded reinforcement[J]. Journal of Structural Engineering, 2009,135(8):896-905.
    [6] CORONELLI D, HANJARI K Z, LUNDGREN K. Severely corroded RC with cover cracking[J]. Journal of Structural Engineering, 2013,139(2):221-232.
    [7] PAPADAKIS V G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress[J]. Cement and Concrete Research, 2000,30:291-299.
    [8] VU K A T, STEWART M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J].Structural Safety,2000,22:313-333.
    [9] XIA J, JIN W L, LI L Y. Shear performance of reinforced concrete beams with corroded stirrups in chloride environment[J]. Corrosion Science, 2011,53:1794-1805.
    [10] STEWART M G. Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams[J]. Structural Safety, 2009,31:19-30.
    [11] ZHU W J, FRAN?OIS R, CLELAND D, et al. Failure mode transitions of corroded deep beams exposed to marine environment for long period[J]. Engineering Structures, 2015,96:66-77.
    [12] RODRIGUEZ J, ORTEGA L M, CASAL J. Load carrying capacity of concrete structures with corroded reinforcement[J]. Construction and Building Materials, 1997,11(4):239-248.
    [13] ZHANG W P, ZHOU B B, GU X L, et al. Probability distribution model for cross-sectional area of corroded reinforcing steel bars[J]. Journal of Materials in Civil Engineering, 2014, 26(5):822-832.
    [14] AZAD A K, AHMAD S, AZHER S A. Residual strength of corrosion-damaged reinforced concrete beams[J]. ACI Structural Journal, 2007,104(1):40- 47.
    [15] WANG L, ZHANG X H, ZHANG J R, et al. Effects of stirrup and inclined bar corrosion on shear behavior of RC beams[J]. Construction and Building Materials, 2015,98:537-546.
    [16] XUE X, SEKI H, SONG Y. Shear behavior of RC beams containing corroded stirrups[J]. Advances in Structural Engineering, 2014,17(2):165-177.
    [17] HIGGINS C, FARROW W C, TURAN O T. Analysis of reinforced concrete beams with corrosion damaged stirrups for shear capacity[J]. Structure and Infrastructure Engineering, 2012,8(11):1080-1092.
    [18] AZAM R, SOUDKI K. Structural performance of shear-critical RC deep beams with corroded longitudinal steel reinforcement[J]. Cement & Concrete Composites, 2012,34:946-957.
    [19] JUAREZ C A, GUEVARA B, FAJARDO G, et al. Ultimate and nominal shear strength in reinforced concrete beams deteriorated by corrosion[J]. Engineering Structures, 2011, 33: 3189-3196.
    [20] ZHANG D W, ZHAO Y X, JIN W L, et al. Shear strengthening of corroded reinforced concrete columns using pet fiber based composites[J]. Engineering Structures, 2017, 153: 757-765.
    [21] 徐善华, 牛荻涛. 锈蚀钢筋混凝土简支梁斜截面抗剪性能研究[J]. 建筑结构学报, 2004,25(5):98-104. (XU Shanhua, NIU Ditao. The shear behavior of corroded simply supported reinforced concrete beam[J]. Journal of Building Structures, 2004,25(5):98-104.(in Chinese))
    [22] 赵羽习, 金伟良. 锈蚀箍筋混凝土梁的抗剪承载力分析[J]. 浙江大学学报(工学版), 2008,42(1):19-24. (ZHAO Yuxi, JIN Weiliang. Analysis of shearing capacity of concrete beams with corroded stirrups[J]. Journal of Zhejiang University (Engineering Science),2008,42(1):19-24.(in Chinese))
    [23] 王小惠, 刘西拉. 锈蚀钢筋混凝土梁的斜截面抗剪承载能力[J]. 上海交通大学学报, 2007,41(6):944-949. ( WANG Xiaohui, LIU Xila. Shear carrying capacity of corroded reinforced concrete beams[J]. Journal of Shanghai Jiaotong University, 2007,41(6):944-949.(in Chinese))
    [24] ZHANG W P, YE Z W, GU X L. Effects of stirrup corrosion on shear behaviour of reinforced concrete beams[J]. Structure and Infrastructure Engineering, 2017,13(8):1081-1092.
    [25] 混凝土结构耐久性评定标准:CECS 220:2007[S]. 北京: 中国建筑工业出版社, 2007.(Standard for durability assessment of concrete structures: CECS 220:2007[S]. Beijing: China Architecture & Building Press,2007. (in Chinese))
    [26] SAETTA A V, SCOTTA R V, VITALIANI R V. Analysis of chloride diffusion into partially saturated concrete[J]. ACI Materials Journal, 1993,90(5):441- 451.
    [27] 闵红光. 海洋大气环境下轴压损伤混凝土中的氯离子传输[D].上海:同济大学,2016.(MIN Hongguang. Chloride transport in concrete damaged by axial compression under a marine atmospheric environment[D]. Shanghai: Tongji University, 2016. (in Chinese))
    [28] 周彬彬. 海洋大气环境下钢筋混凝土基本构件服役寿命设计方法研究[D]. 上海: 同济大学, 2015.(ZHOU Binbin. Study on service life design method of reinforced concrete structural members under marine atmospheric environment[D]. Shanghai: Tongji University, 2015.(in Chinese))
    [29] LIU T, WEYERS R W. Modeling the dynamic corrosion process in chloride contaminated concrete structures[J]. Cement and Concrete Research, 1998,28(3):365-379.
    [30] 蒋建华, 王强强. 基于微环境影响的混凝土电阻率计算模型[J].混凝土与水泥制品,2014(12):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700