板翅式EGR冷却器的气-固-液耦合传热模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gas-solid-liquid Coupling Heat Transfer Simulation of Plate-fin EGR Cooler
  • 作者:季松 ; 龙文元 ; 刘伟国
  • 英文作者:JI Song;LONG Wenyuan;LIU Weiguo;School of Aeronautical Manufacturing Engineering,Nanchang University of Aviation;Shenzhen Xinqibin Technology Co., Ltd.;
  • 关键词:EGR ; NOx ; CFX ; 板翅式 ; 温度场 ; 速度场
  • 英文关键词:EGR;;NOx;;CFX;;plate-fin type;;temperature field;;velocity pattern
  • 中文刊名:SDNR
  • 英文刊名:Internal Combustion Engine & Powerplant
  • 机构:南昌航空大学航空制造工程学院;深圳市新旗滨科技有限公司;
  • 出版日期:2018-12-15
  • 出版单位:内燃机与动力装置
  • 年:2018
  • 期:v.35;No.168
  • 语种:中文;
  • 页:SDNR201806002
  • 页数:9
  • CN:06
  • ISSN:37-1445/TK
  • 分类号:15-23
摘要
利用ANSYS CFX软件对板翅式废气再循环(exhaust gas recirculation,EGR)冷却器进行气-固-液耦合传热计算,分析冷却器中气液温度场及速度场,对比研究光管型、含有波型翅片及含有凹坑的3种冷却器的换热效率。结果表明:当冷却器增加翅片之后,换热效率与光管型冷却器相比提高了26.7%,气体流动更加稳定,过渡区域的涡流减少;而增加凹坑之后的冷却器的换热效率相比光管型冷却器降低了5%,且其流速减慢,过渡区域出现大面积的涡流。
        The gas-solid-liquid coupling heat transfer calculation of plate-fin exhaust gas recirculation(EGR) cooler is carried out by using ANSYS CFX software. The gas-liquid temperature field and velocity field in the cooler are analyzed, and the heat exchange efficiency of light tube type and 3 kinds of cooler containing wave type fins and pits are compared and studied. The results show that when the fins add to the cooler, the heat exchange efficiency increases by 26.7% compared with the optical tube cooler, the gas flow is more stable, the eddy current in the transition area decreases, and the heat exchange efficiency of the cooler after adding pits goes down by 5% compared with the optical tube cooler, and the flow rate slows down, and the transition area has a large eddy.
引文
[1] 温任林,艾森林,徐伟.EGR标定方法与试验研究[J].柴油机,2009,31(1):17-20.
    [2]YAMADA T, IKEYA N, KONDOH N. New EGR system for heavy duty diesel engines[J].SAE Transactions, 1998.
    [3]GRIFFIN J R, GANSEMAN C, BAERTS C, et al. Cooled EGR rate measurement with a thermal anemometer for EPA02 heavy duty diesel engine emission control[C]// SAE 2003 World Congress & Exhibition,2003:440-444.
    [4]胡永明,陈启安,许维武,等.发动机废气再循环冷却器性能计算仿真[J].柴油机设计与制造,2012,18(1):26-29.
    [5]潘锁柱,宋崇林,裴毅强,等.EGR对GDI汽油机燃烧和排放特性的影响[J].内燃机学报,2012(5):409-414.
    [6]CHANG D K, SOBH A J, TJONG J S, et al.Diesel EGR cooler fouling with Ni-Fe-Cr-Al DPF at freeway cruise[J].Engine Components, 2010.
    [7]ZHENG M, READER G T, HAWLEY J G. Diesel engine exhaust gas recirculation-a review on advanced and novel concepts[J].Energy Conversion & Management, 2004, 45(6):883-900.
    [8]HUANG Y Q, YU X L, LU G D. Numerical simulation and optimization design of the EGR cooler in vehicle[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2008, 9(9):1270-1276.
    [9]邓爱平.某国V柴油机EGR系统结构优化及试验研究[D].镇江:江苏大学,2017.
    [10]杨仕清.汽车发动机EGR废气冷却温度的稳定研究及改进设计[J].汽车工业研究,2017(5):51-53.
    [11]王岩松,汤晓林,李燕,等.柴油机EGR冷却器温度场有限元仿真研究[J].拖拉机与农用运输车,2008,35(5):47-49.
    [12]伍纲,王东方,苏小平,等.柴油机C-EGR系统新型冷却器数值分析[J].流体机械,2012,40(11):75-79.
    [13]刘法学,安伟,李威.板翅式EGR冷却器耦合传热模拟研究[J].机械制造与自动化,2017,46(1):137-140.
    [14]吴江,张振东,尹丛勃,等.柴油机EGR冷却器综合性能分析及改进[J].柴油机设计与制造,2015,21(3):5-8.
    [15]周碧,朱从容.柴油机废气再循环系统冷却器的数值模拟[J].机械工程师,2011(12):62-63.
    [16]徐晓川,石秀勇,倪计民,等.基于流动过程的EGR冷却特性研究[J].小型内燃机与车辆技术,2017,46(4):36-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700