用户名: 密码: 验证码:
新型3-PRC柔性并联微操作平台的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Investigation on a Novel 3-PRC Compliant Parallel Micromanipulator
  • 作者:李祥春 ; 李杨民 ; 丁冰晓 ; 徐洪业
  • 英文作者:Li Xiangchun;Li Yangmin;Ding Bingxiao;Xu Hongye;School of Mechanical Engineering,Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control,Tianjin University of Technology;Department of Industrial and Systems Engineering,The Hong Kong Polytechnic University;Faculty of Science and Technology,University of Macau;
  • 关键词:并联微操作平台 ; 二级杠杆放大机构 ; 运动学 ; 工作空间 ; 解耦性 ; MATLAB
  • 英文关键词:3-PRC;;structural design;;mathematical models;;MATLAB;;finite element method;;mesh generation;;degrees of freedom
  • 中文刊名:JXKX
  • 英文刊名:Mechanical Science and Technology for Aerospace Engineering
  • 机构:天津理工大学机械工程学院天津市先进机电系统与智能控制重点实验室;香港理工大学工业与系统工程学系;澳门大学科技学院;
  • 出版日期:2017-11-07 15:46
  • 出版单位:机械科学与技术
  • 年:2018
  • 期:v.37;No.279
  • 基金:国家自然科学基金项目(51575544);; 天津市自然科学基金项目(16JCZDJC38000)资助
  • 语种:中文;
  • 页:JXKX201805010
  • 页数:6
  • CN:05
  • ISSN:61-1114/TH
  • 分类号:59-64
摘要
采用压电陶瓷作为驱动器设计了一种带有二级杠杆放大机构的3-PRC柔性并联微操作平台,该平台能实现空间三自由度的微小平移运动,放大机构的理论与有限元仿真分析放大倍数分别为8.772和8.245。首先采用矢量法建立了该机构的运动学模型,得到了其运动学正、逆解和雅克比矩阵。然后利用MATLAB软件分析并绘制了平台的工作空间,最后对机构的解耦性进行了理论分析并利用有限元软件进行了验证。结果表明该机构的耦合性误差小,可以实现空间三自由度微纳米级别的运动,具有较大的运动空间和良好的运动解耦性。
        This paper proposes a structural design about 3-PRC compliant parallel micromanipulator integrated with a novel secondary lever amplification mechanism driven by piezoelectric actuator,which can realize translate motion along X/Y/Z axis,and the theoretical amplification ratio and the finite element simulation analysis magnification ratio of the secondary lever amplification mechanism are 8. 772 and 8. 245, respectively. The kinematics mathematical models are established with vector method,and the forward solution,inverse solution and Jacobian matrix are also derived at first. Then,the workspace of the stage is obtained by MATLAB and decoupling characteristics are analyzed and validated by finite element method. The result showed that the coupling error of the mechanism is small,and this 3-PRC micromanipulator can achieve micro/nano level motion with three degrees of freedom( mechanics).
引文
[1]李杨民,汤晖,徐青松,等.面向生物医学应用的微操作机器人技术发展态势[J].机械工程学报,2011,47(23):1-13Li Y M,Tang H,Xu Q S,et al.Development status of micromanipulator technology for biomedical applications[J].Journal of Mechanical Engineering,2011,47(23):1-13(in Chinese)
    [2]林海波,杨国哲.压电陶瓷电机驱动的三维微动定位平台及验证[J].压电与声光,2015,37(6):1030-1033Lin H B,Yang G Z.Research on a precision positioning stage based on piezoelectric actuators and it's validation[J].Piezoelectrics&Acoustooptics,2015,37(6):1030-1033(in Chinese)
    [3]胡俊峰,郝亚洲,徐贵阳,等.一种新型微操作平台的精确运动控制[J].机械科学与技术,2016,35(2):216-221Hu J F,Hao Y Z,Xu G Y,et al.Precision motion control of a novel micro-manipulation stage[J].Mechanical Science and Technology,2016,35(2):216-221(in Chinese)
    [4]Ding B X,Li Y M.Design and analysis of a decoupled XY micro compliant parallel manipulator[C]//Proceedings of 2014 IEEE International Conference on Robotics and Biomimetics,December 5-10,2014.Bali,Indonesia:IEEE,2015:1898-1903
    [5]胡俊峰,徐贵阳.一种新型4自由度柔顺并联机构的设计和特性[J].机械科学与技术,2014,33(4):496-500Hu J F,Xu G Y.The design and properties of a novel 4-DOF compliant parallel mechanism[J].Mechanical Science and Technology for Aerospace Engineering,2014,33(4):496-500(in Chinese)
    [6]范伟,林瑜阳,李钟慎.压电陶瓷驱动器的迟滞特性[J].光学精密工程,2016,24(5):1112-1117Fan W,Lin Y Y,Li Z S.Hysteresis characteristics of piezoelectric ceramic actuators[J].Optics and Precision Engineering,2016,24(5):1112-1117(in Chinese)
    [7]杜志元,闫鹏.基于桥式放大机构的柔顺位微定位平台的研究[J].机器人,2016,38(2):185-192Du Z Y,Yan P.Analysis on compliant micro positioning stage based on bridge-type amplification mechanism[J].Robot,2016,38(2):185-192(in Chinese)
    [8]卢倩,黄卫清,孙梦馨.基于柔度比优化设计杠杆式柔性铰链放大机构[J].光学精密工程,2016,24(1):102-111Lu Q,Huang W Q,Sun M X.Optimization design of amplification mechanism for level flexure hinge based on compliance ratio[J].Optics and Precision Engineering,2016,24(1):102-111(in Chinese)
    [9]Ding B X,Li Y M,Xiao X,et al.Design and analysis of a3-DOF planar micromanipulation stage with large rotational displacement for micromanipulation system[J].Mechanical Sciences,2017,8(1):117-126
    [10]Li Y M,Xu Q S.A novel piezoactuated XY stage with parallel,decoupled,and stacked flexure structure for micro-/nanopositioning[J].IEEE Transactions on Industrial Electronics,2011;58(8):3601-3615
    [11]马立,谢炜,刘波,等.柔性铰链微定位平台的设计[J].光学精密工程,2014,22(2):338-345Ma L,Xie W,Liu B,et al.Design of micro-positioning stage with flexure hinge[J].Optics and Precision Engineering,2014,22(2):338-345(in Chinese)
    [12]沈剑英,张海军.新型桥式机构放大率的计算、分析和实验验证[J].仪器仪表学报,2015,36(8):1877-1883Shen J Y,Zhang H J.Calculation,analysis and experimental verification of the magnification ratio for novel bridge-type mechanism[J].Chinese Journal of Scientific Instrument,2015,36(8):1877-1883(in Chinese)
    [13]于月民,冷劲松.柔性微位移放大机构的设计与动力性能仿真分析[J].机械设计与研究,2011,27(3):48-51,55Yu Y M,Leng J S.Design and dynamic performances simulation of a flexible micro-displacement amplification mechanism[J].Machine Design and Research,2011,27(3):48-51,55(in Chinese)
    [14]Li Y M,Xu Q S.Design and optimization of an XYZ parallel micromanipulator with flexure hinges[J].Journal of Intelligent and Robotic Systems,2009,55(4-5):377-402
    [15]Li Y M,Xu Q S.A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation[J].IEEE Transactions on Automation Science and Engineering,2011,8(2):265-279
    [16]李仕华,龚文,姜珊,等.一种新型3-RPC柔性精密平台设计与分析[J].机械工程学报,2013,49(23):53-58Li S H,Gong W,Jiang S,et al.Design and analysis of novel 3-RPC flexible precision platform[J].Journal of Mechanical Engineering,2013,49(23):53-58(in Chinese)
    [17]杜云松,李铁民,姜峣,等.平面柔性铰链机构的柔度计算方法[J].清华大学学报(自然科学版),2016,56(6):633-639Du Y S,Li T M,Jiang Y,et al.Compliance calculation method for planar flexure-based mechanisms[J].Journal of Tsinghua University(Science&Technology),2016,56(6):633-639(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700