典型煤系岩石的可见-近红外光谱特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on visible-near infrared spectrum features of typical coal measures rocks
  • 作者:杨恩 ; 王世博 ; 葛世荣
  • 英文作者:YANG En;WANG Shibo;GE Shirong;School of Mechanical and Electrical Engineering,China University of Mining and Technology;
  • 关键词:煤岩识别 ; 煤系岩石 ; 可见-近红外光谱 ; 反射光谱特征 ; 光谱吸收特征 ; 吸收谷 ; 碳质页岩
  • 英文关键词:coal-rock identification;;coal measures rock;;visible-near infrared spectrum;;reflectance spectrum feature;;spectrum absorption feature;;absorption valley;;carbonaceous shale
  • 中文刊名:MKZD
  • 英文刊名:Industry and Mine Automation
  • 机构:中国矿业大学机电工程学院;
  • 出版日期:2019-02-21 10:03
  • 出版单位:工矿自动化
  • 年:2019
  • 期:v.45;No.276
  • 基金:国家自然科学基金联合基金资助项目(U1610251,U1510116);; 国家重点研发计划资助项目(2018YFC0604503);; 江苏省高校优势学科建设工程项目(PAPD)
  • 语种:中文;
  • 页:MKZD201903009
  • 页数:8
  • CN:03
  • ISSN:32-1627/TP
  • 分类号:48-54+92
摘要
为研究基于可见-近红外光谱技术的煤岩识别方法,从山西、山东4个煤矿收集了页岩、砂岩、灰岩三大类11种典型煤系岩石,测定了其可见-近红外波段(400~2 450nm)的反射光谱,分析了其矿物、元素组成对反射光谱特征的影响,获得了碳质物质含量对煤系页岩反射光谱曲线特征参数的影响规律。研究结果表明:①绝大多数煤系岩石的反射光谱曲线在可见光波段(400~780nm)和短波近红外波段(780~1 100nm)呈现出随波长增加的多重吸收谷。在长波近红外波段(1 100~2 450nm),明显的吸收谷主要集中在1 400,1 900,2 200,2 350nm波长,页岩、灰岩吸收谷的波长相对固定,而不同砂岩吸收谷的波长呈现出多种变化。②除碳质物质含量较高的碳质页岩外,同一煤矿各类煤系岩石与煤的可见-近红外波段反射光谱吸收特征差异明显。③当煤系页岩中碳质物质含量增大时,可见-近红外波段反射光谱曲线的光谱斜率和各明显吸收谷深度均呈先快速减小后趋于平缓的特点。
        In order to study coal-rock identification method based on visible-near infrared spectrum technology,11 types of typical coal measures rocks including three main categories namely shale,sandstone and limestone were collected from four coal mines of Shanxi and Shandong provinces.Their reflectance spectra in visible-near infrared band(400-2 450 nm)were measured and influences of mineral and elemental compositions on spectrum features were studied.Differences between reflectance spectrum curves of coal measures rocks and the ones of coals from the four coal mines were analyzed,and influence laws of carbonaceous matter content on characteristic parameters of reflectance spectra curves of coal measures shale were obtained.The study results show that reflectance spectrum curves of the most coal measures rocks show multiple absorption valleys with increasing wavelength in visible light band(400-780 nm)and shortwave near infrared band(780-1 100 nm).In longwave near infrared band(1 100-2 450 nm),distinct absorption valleys are mainly located near 1 400 nm,1 900 nm,2 200 nm and 2 350 nm wave length.The wave length of absorption valleys of shale and limestone are relatively fixed while the ones of different sandstones show a variety of changes.Except for carbonaceous shale without distinct absorption features,absorption features of reflectance spectra of coal measures rocks and coals from the same coal mine are obviously different in visible-near infrared band.With increase of carbonaceous matter content of coal measures shale,a common feature is presented that spectral slope of reflectance spectrum curves and depth of each distinct absorption valley in visible-near infrared band both decrease rapidly at first and then tend to be flat.
引文
[1]吴婕萍,李国辉.煤岩界面自动识别技术发展现状及其趋势[J].工矿自动化,2015,41(12):44-49.WU Jieping,LI Guohui.Development status and tendency of automatic identification technologies of coal-rock interface[J].Industry and Mine Automation,2015,41(12):44-49.
    [2]BESSINGER S L,NELSON M G.Remnant roof coal thickness measurement with passive gamma ray instruments in coal mines[J].IEEE Transactions on Industry Applications,1993,29(3):562-565.
    [3]XU Jing,WANG Zhongbin,WANG Jiabiao,et al.Acoustic-based cutting pattern recognition for shearer through fuzzy C-means and a hybrid optimization algorithm[J].Applied Sciences,2016,6(10):294.
    [4]RALSTON J C,STRANGE A D.Developing selective mining capability for longwall shearers using thermal infrared-based seam tracking[J].International Journal of Mining Science and Technology,2013,23(1):47-53.
    [5]伍云霞,张宏.基于Curvelet变换和压缩感知的煤岩识别方法[J].煤炭学报,2017,42(5):1331-1338.WU Yunxia,ZHANG Hong.Recognition method of coal-rock images based on Curvelet transform and compressed sensing[J].Journal of China Coal Society,2017,42(5):1331-1338.
    [6]王昕,胡克想,俞啸,等.基于太赫兹时域光谱技术的煤岩界面识别[J].工矿自动化,2017,43(1):29-34.WANG Xin,HU Kexiang,YU Xiao,et al.Coal-rock interface recognition based on terahertz time-domain spectroscopy[J].Industry and Mine Automation,2017,43(1):29-34.
    [7]XIAO Dong,LE Batuan,MAO Yachun,et al.Research on coal exploration technology based on satellite remote sensing[J].Journal of Sensors,2016(1):1-9.
    [8]王鹏,刘庆生,刘高焕,等.煤矸石堆场信息遥感提取方法对比[J].地球信息科学学报,2013,15(5):768-774.WANG Peng,LIU Qingsheng,LIU Gaohuan,et al.Method comparison of extraction of gangue yard based on remote sensing[J].Journal of GeoInformation Science,2013,15(5):768-774.
    [9]张川,叶发旺,徐清俊,等.钻孔岩心高光谱技术系统及其在矿产勘查中的应用[J].地质科技情报,2016,35(6):177-183.ZHANG Chuan,YE Fawang,XU Qingjun,et al.Drill core hyperspectral technology system and its application in mineral prospecting[J].Geological Science and Technology Information,2016,35(6):177-183.
    [10]PERMANA A K,WARD C R,LI Z,et al.Distribution and origin of minerals in high-rank coals of the South Walker Creek area,Bowen Basin,Australia[J].International Journal of Coal Geology,2013,116:185-207.
    [11]高德燚,胡宝林,刘会虎,等.淮南煤田泥页岩地球化学特征分析及生烃潜力评价[J].煤炭科学技术,2017,45(5):198-204.GAO Deyi,HU Baolin,LIU Huihu,et al.Analysis on geochemical characteristics of mud shale and potential evaluation of hydrocarbon generation in Huainan Coalfield[J].Coal Science and Technology,2017,45(5):198-204.
    [12]MAO Yachun,MA Baodong,LIU Shanjun,et al.Study and validation of a remote sensing model for coal extraction based on reflectance spectrum features[J].Canadian Journal of Remote Sensing,2014,40(5):327-335.
    [13]SONG Zeyang,KUENZER C.Spectral reflectance(400-2 500 nm)properties of coals,adjacent sediments,metamorphic and pyrometamorphic rocks in coal-fire areas:a case study of Wuda coalfield and its surrounding areas,northern China[J].International Journal of Coal Geology,2017,171:142-152.
    [14]宋亮,刘善军,虞茉莉,等.基于可见-近红外和热红外光谱联合分析的煤和矸石分类方法研究[J].光谱学与光谱分析,2017,37(2):416-422.SONG Liang,LIU Shanjun,YU Moli,et al.Aclassification method based on the combination of visible,near-infrared and thermal infrared spectrum for coal and gangue distinguishment[J].Spectroscopy and Spectral Analysis,2017,37(2):416-422.
    [15]LE Batuan,XIAO Dong,OKELLO D,et al.Coal exploration technology based on visible-infrared spectra and remote sensing data[J].Spectroscopy Letters,2017,50(8):440-450.
    [16]YANG En,GE Shirong,WANG Shibo.Characterization and identification of coal and carbonaceous shale using visible and near-infrared reflectance spectroscopy[J].Journal of Spectroscopy,2018,2018:1-13.
    [17]HUNT G R,VINCENT R K.The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes[J].Journal of Geophysical Research,1968,73(18):6039-6046.
    [18]HUNT G R,SALISBURY J W.Visible and nearinfrared spectra of minerals and rocks:XI.Sedimentary rocks[J].Modern Geology,1976,5:211-217.
    [19]BALDRIDGE A M,HOOK S J,GROVE C I,et al.The ASTER spectral library version 2.0[J].Remote Sensing of Environment,2009,113(4):711-715.
    [20]ZAINI N,VAN DER MEER F,VAN DER WERFFH.Determination of carbonate rock chemistry using laboratory-based hyperspectral imagery[J].Remote Sensing,2014,6(5):4149-4172.
    [21]燕守勋,张兵,赵永超,等.矿物与岩石的可见-近红外光谱特性综述[J].遥感技术与应用,2003,18(4):191-201.YAN Shouxun,ZHANG Bing,ZHAO Yongchao,et al.Summarizing the VIS-NIR spectra of minerals and rocks[J].Remote Sensing Technology and Application,2003,18(4):191-201.
    [22]SGAVETTI M,POMPILIO L,MELI S.Reflectance spectroscopy(0.3-2.5μm)at various scales for bulkrock identification[J].Geosphere,2006,2(3):142-160.
    [23]HUNT G R,SALISBURY J W.Visible and nearinfrared spectra of minerals and rocks:I silicate minerals[J].Modern geology,1970,1:283-300.
    [24]王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31.WANG Jinnian,ZHENG Lanfen,TONG Qingxi.The spectral absorption identification model and mineral mapping by imaging spectrometer data[J].Remote Sensing of Environment China,1996,11(1):20-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700