缙云山4种森林植被土壤团聚体有机碳分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution of Organic Carbon in Soil Aggregates from Four Kinds of Forest Vegetation on Jinyun Mountain
  • 作者:王富华 ; 吕盛 ; 黄容 ; 高明 ; 王子芳 ; 徐畅
  • 英文作者:WANG Fu-hua;Lü Sheng;HUANG Rong;GAO Ming;WANG Zi-fang;XU Chang;College of Resource and Environment,Southwest University;Chongqing Municipal Tobacco Company;
  • 关键词:缙云山 ; 林分类型 ; 有机碳 ; 团聚体 ; 稳定性
  • 英文关键词:Jinyun Mountain;;stand type;;organic carbon;;aggregates;;stability
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西南大学资源环境学院;中国烟草总公司重庆市公司;
  • 出版日期:2018-10-15 16:46
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2017YFD0800101)
  • 语种:中文;
  • 页:HJKZ201903057
  • 页数:8
  • CN:03
  • ISSN:11-1895/X
  • 分类号:496-503
摘要
以重庆市缙云山的竹林、阔叶林、针叶林和针阔叶混交林这4种亚热带森林植被为研究对象,分析不同林分下土壤团聚体及团聚体有机碳在0~20、20~40、40~60和60~100 cm土壤剖面上的分布规律.结果表明,阔叶林土壤> 2 mm粒级团聚体含量、平均重量直径(MWD)、几何平均直径(GMD)及> 0. 25 mm团聚体含量(R0. 25)均随土层深度的增加而降低,而其他林分在整个土层中则无明显规律.在各土层中,竹林以> 2 mm粒级团聚体为主(30. 73%~53. 08%);阔叶林和混交林的2~0. 25 mm粒级团聚体含量较高,为36. 27%~44. 67%和48. 69%~52. 44%;针叶林的优势粒径为2~0. 25 mm和<0. 053 mm.总体上,在各土层中,竹林团聚体的MWD、GMD、R0. 25值均高于其他林分,且其分形维数(D)低于其他林分,可见竹林的土壤团聚体稳定性较好.随着土层深度的增加,不同林分(除针叶林外)土壤团聚体有机碳含量逐渐降低,其中竹林团聚体有机碳含量最高,显著高于针叶林和混交林.就不同团聚体粒级而言,4种林分土壤团聚体有机碳在整个土壤剖面上无明显规律,但各土层均以2~0. 25 mm和<0. 053 mm粒级团聚体有机碳含量较高.不同林分下土壤团聚体有机碳相对贡献率存在显著差异,其中针叶林中<0. 053 mm粒级团聚体有机碳贡献率最高;竹林的> 2 mm粒级团聚体有机碳贡献率高达27. 44%~53. 47%;而阔叶林和混交林则以2~0. 25 mm粒级团聚体有机碳贡献率最高.缙云山的4种林分中,竹林的土壤团聚体稳定性较好,而针叶林的较差;在各土层中,竹林土壤各粒级团聚体有机碳含量最高,针叶林最低.
        This study was intended to explore the distribution and stability of soil aggregates and the organic carbon for different forest types and to provide a scientific basis for the efficient management of soil carbon pools in subtropical forest ecosystems. Four subtropical forest types,including bamboo forest,broad-leaf forest,coniferous forest,and a mixed coniferous and broad-leaf forest on Jinyun Mountain( Chongqing Municipality),were selected as research subjects to explore the distribution of soil aggregates and organic carbon in different layers( depths of 0-20,20-40,40-60,and 60-100 cm). The results showed: The content of > 2 mm aggregates and mean weight diameter( MWD),geometric mean diameter( GMD),and > 0. 25 mm aggregate content( R0. 25) in broad-leaf forests decreased with soil depth,while other forests did not have a similar distribution pattern. In each soil layer,bamboo forest soils were mainly composed of > 2 mm fractions of aggregates,which made up 30. 73%-53. 08% of the total content; The content of 2-0. 25 mm particle size aggregates of broad-leaf and mixed forest soils was higher than that for other sizes,and its content ranged from 36. 27% to 44. 67%and 48. 69% to 52. 44%,respectively. The 2-0. 25 mm and < 0. 053 mm fractions of aggregates dominated conifer soils. In general,the MWD,GMD,and R0. 25 of bamboo aggregates were higher than for other stands in each soil layer,and the fractal dimension( D)was lower than for other stands. This indicated that the soil aggregates of bamboo forest have better stability. As the soil layer deepened,the organic carbon content of soil aggregates in forest types,except for coniferous forest,gradually decreased. Among them all,bamboo forest aggregates had the highest organic carbon content,and this was significantly higher than that of coniferous forest and mixed forest. In the whole soil profile,as far as different aggregate size is concerned,there was no obvious regularity about organic carbon in the four forest types soil aggregates; the organic carbon content of the 2-0. 25 mm and < 0. 053 mm fractions of aggregates was high in every soil layer. There was a significant difference in the relative contribution of organic carbon in soil aggregates for different forest stands,among these contributions,the contribution rate of organic carbon in the < 0. 053 mm fraction of aggregates in the coniferous forest was the highest. The organic carbon contribution rate of the > 2 mm fraction of bamboo forest aggregates was as high as 27. 44%-53. 47%. Broad-leaf forests and mixed forests had the highest contribution to the organic carbon of the 2-0. 25 mm fractions of soil aggregates. Among the four forest types on Jinyun Mountain,the soil aggregates in bamboo forest have better stability,but the stability of aggregates in coniferous forests is poor. In each soil layer,the content of bamboo forest organic carbon in the various aggregates was the highest,and that of coniferous forest was the lowest.
引文
[1]于法展,张茜,张忠启,等.庐山不同森林植被对土壤团聚体及其有机碳分布的影响[J].水土保持研究,2016,23(6):15-19.Yu F Z,Zhang Q,Zhang Z Q,et al.Effects of different types of forest vegetation on the distribution of soil aggregate and its organic carbon in Lushan Mountain[J].Research of Soil and Water Conservation,2016,23(6):15-19.
    [2]Yin Y,Liang C H,Pei Z J.Effect of greenhouse soil management on soil aggregation and organic matter in northeast China[J].Catena,2015,133:412-419.
    [3]Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J].European Journal of Soil Science,2000,51(4):595-605.
    [4]刘中良,宇万太,周桦,等.不同有机厩肥输入量对土壤团聚体有机碳组分的影响[J].土壤学报,2011,48(6):1149-1157.Liu Z L,Yu W T,Zhou H,et al.Effect of application rate of barnyard manure on organic carbon fraction of soil aggregates[J].Acta Pedologica Sinica,2011,48(6):1149-1157.
    [5]Pulleman M M,Marinissen J C Y.Physical protection of mineralizable C in aggregates from long-term pasture and arable soil[J].Geoderma,2004,120(3-4):273-282.
    [6]潘艳斌,朱巧红,彭新华.有机物料对红壤团聚体稳定性的影响[J].水土保持学报,2017,31(2):209-214.Pan Y B,Zhu Q H,Peng X H.Effects of organic materials on soil aggregation stability in red soil[J].Journal of Soil and Water Conservation,2017,31(2):209-214.
    [7]田慎重,王瑜,张玉凤,等.旋耕转深松和秸秆还田增加农田土壤团聚体碳库[J].农业工程学报,2017,33(24):133-140.Tian S Z,Wang Y,Zhang Y F,et al.Rotary tillage and deep loose and straw return increase farmland soil aggregate carbon pool[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(24):133-140.
    [8]祁迎春,王益权,刘军,等.不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较[J].农业工程学报,2011,27(1):340-347.Qi Y C,Wang Y Q,Liu J,et al.Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index[J].Transactions of the Chinese Society of Agricultural Engineering,2011,27(1):340-347.
    [9]王小红,杨智杰,刘小飞,等.天然林转换成人工林对土壤团聚体稳定性及有机碳分布的影响[J].水土保持学报,2014,28(6):177-182,189.Wang X H,Yang Z J,Liu X F,et al.Effects of natural forest converted to plantations on soil organic carbon distribution and stability of aggregates in middle-subtropics of China[J].Journal of Soil and Water Conservation,2014,28(6):177-182,189.
    [10]张大鹏,范少辉,蔡春菊,等.川南不同退耕还竹林土壤团聚特征比较[J].林业科学,2013,49(1):27-32.Zhang D P,Fan S H,Cai C J,et al.Soil aggregates of returning farmland to different bamboo forests in southern Sichuan Province[J].Scientia Silvae Sinicae,2013,49(1):27-32.
    [11]王棣,耿增超,佘雕,等.秦岭典型林分土壤有机碳储量及碳氮垂直分布[J].生态学报,2015,35(16):5421-5429.Wang D,Geng Z C,She D,et al.Soil organic carbon storage and vertical distribution of carbon and nitrogen across different forest types in the Qinling Mountains[J].Acta Ecologica Sinica,2015,35(16):5421-5429.
    [12]刘艳,查同刚,王伊琨,等.北京地区栓皮栎和油松人工林土壤团聚体稳定性及有机碳特征[J].应用生态学报,2013,24(3):607-613.Liu Y,Zha T G,Wang Y K,et al.Soil aggregate stability and soil organic carbon characteristics in Quercus variabilis and Pinus tabulaeformis plantations in Beijing area[J].Chinese Journal of Applied Ecology,2013,24(3):607-613.
    [13]刘勇.重庆缙云山森林生态系统服务功能及其价值评价研究[D].北京:北京林业大学,2015.
    [14]Elliott E T.Aggregate structure and carbon,nitrogen,and phosphorus in native and cultivated soils[J].Soil Science Society of America Journal,1986,50(3):627-633.
    [15]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.Yang P L,Luo Y P,Shi Y C.Fractal features of soils characterized by grain weight distribution[J].Chinese Science Bulletin,1993,38(20):1896-1899.
    [16]Eynard A,Schumacher T E,Lindstrom M J,Malo D D.Aggregate sizes and stability in cultivated south dakota prairie ustolls and usterts[J].Soil Science Society of America Journal,2004,68(4):1360-1365.
    [17]Wallace B M,Krzic M,Newman R F,et al.Soil aggregate dynamics and plant community response after biosolids application in a semiarid grassland[J].Journal of Environmental Quality,2016,45(5):1663-1671.
    [18]字洪标,向泽宇,王根绪,等.青海不同林分土壤微生物群落结构(PLFA)[J].林业科学,2017,53(3):21-32.Zi H B,Xiang Z Y,Wang G X,et al.Profile of soil microbial community under different stand types in Qinghai Province[J].Scientia Silvae Sinicae,2017,53(3):21-32.
    [19]李鉴霖,江长胜,郝庆菊.土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J].环境科学,2014,35(12):4695-4704.Li J L,Jiang C S,Hao Q J.Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain[J].Environmental Science,2014,35(12):4695-4704.
    [20]毛艳玲,杨玉盛,刑世和,等.土地利用方式对土壤水稳性团聚体有机碳的影响[J].水土保持学报,2008,22(4):132-137.Mao Y L,Yang Y S,Xing S H,et al.Effects of land use on soil organic carbon in water-stable aggregates[J].Journal of Soil and Water Conservation,2008,22(4):132-137.
    [21]李江舟,代快,张立猛,等.施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响[J].环境科学学报,2016,36(6):2114-2120.Li J Z,Dai K,Zhang L M,et al.Effects of biochar application on soil organic carbon distribution and soil aggregate composition of red soils in Yunnan tobacco planting area[J].Acta Scientiae Circumstantiae,2016,36(6):2114-2120.
    [22]Denef K,Six J,Merckx R,et al.Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy[J].Plant and Soil,2002,246(2):185-200.
    [23]周纯亮,吴明.中亚热带四种森林土壤团聚体及其有机碳分布特征[J].土壤,2011,43(3):406-410.Zhou C L,Wu M.Distribution of soil aggregates and SOC of aggregates under four forest types in mid-subtropics[J].Soils,2011,43(3):406-410.
    [24]吕文星,张洪江,王伟,等.重庆四面山不同林地土壤团聚体特征[J].水土保持学报,2010,24(4):192-197,202.LüW X,Zhang H J,Wang W,et al.Characteristics of soil aggregates in different forestlands in Simian Mountains,Chongqing[J].Journal of Soil and Water Conservation,2010,24(4):192-197,202.
    [25]黄晓强,信忠保,赵云杰,等.北京山区典型人工林土壤团聚体组成及其有机碳分布特征[J].水土保持学报,2016,30(1):236-243.Huang X Q,Xin Z B,Zhao Y J,et al.Soil aggregate composition and distribution characteristics of soil organic carbon of typical plantations in Mountainous Area of Beijing[J].Journal of Soil and Water Conservation,2016,30(1):236-243.
    [26]谢锦升,杨玉盛,陈光水,等.植被恢复对退化红壤团聚体稳定性及碳分布的影响[J].生态学报,2008,28(2):702-709.Xie J S,Yang Y S,Chen G S,et al.Effects of vegetation restoration on water stability and organic carbon distribution in aggregates of degraded red soil in subtropics of China[J].Acta Ecologica Sinica,2008,28(2):702-709.
    [27]李娟,廖洪凯,龙健,等.喀斯特山区土地利用对土壤团聚体有机碳和活性有机碳特征的影响[J].生态学报,2013,33(7):2147-2156.Li J,Liao H K,Long J,et al.Effect of land use on the characteristics of organic carbon and labile organic carbon in soil aggregates in Karst mountain areas[J].Acta Ecologica Sinica,2013,33(7):2147-2156.
    [28]Six J,Elliott E T,Paustian K.Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture[J].Soil Biology and Biochemistry,2000,32(14):2099-2103.
    [29]刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展[J].生态学报,2007,27(6):2642-2650.Liu M Q,Hu F,Chen X Y.A review on mechanisms of soil organic carbon stabilization[J].Acta Ecologica Sinica,2007,27(6):2642-2650.
    [30]聂富育,杨万勤,杨开军,等.四川盆地西缘4种人工林土壤团聚体及有机碳特征[J].应用与环境生物学报,2017,23(3):542-547.Nie F Y,Yang W Q,Yang K J,et al.Soil aggregates and organic carbon in four plantations on the western edge of the Sichuan Basin[J].Chinese Journal of Applied and Environmental Biology,2017,23(3):542-547.
    [31]Jastrow J D.Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J].Soil Biology and Biochemistry,1996,28(4-5):665-676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700