小麦光呼吸途径电子流分配的模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigating Photosynthetic Electron Flow Allocation to Photorespiration Pathway in Wheat
  • 作者:叶子飘 ; 段世华 ; 安婷 ; 康华靖
  • 英文作者:YE Zipiao;DUAN Shihua;AN Ting;KANG Huajing;College of Math and Physics, Jinggangshan University;School of Life Sciences, Jinggangshan University;Wenzhou Academy of Agricultural Sciences;
  • 关键词:小麦 ; 电子传递速率 ; 光呼吸速率 ; 光合CO_2响应模型 ; 光呼吸CO_2响应模型
  • 英文关键词:Wheat;;Electron transport rate;;Photorespiratory rate;;CO_2-response model of photosynthesis;;CO_2-response model of photorespiration
  • 中文刊名:MLZW
  • 英文刊名:Journal of Triticeae Crops
  • 机构:井冈山大学数理学院;井冈山大学生命科学学院;温州市农业科学研究院;
  • 出版日期:2019-04-11 10:09
  • 出版单位:麦类作物学报
  • 年:2019
  • 期:v.39;No.258
  • 基金:国家自然科学基金项目(31560069);; 温州市重点科技创新团队项目(C20150008)
  • 语种:中文;
  • 页:MLZW201904011
  • 页数:9
  • CN:04
  • ISSN:61-1359/S
  • 分类号:72-80
摘要
为探讨分配到植物光呼吸的光合电子流(J_o)对CO_2浓度(J_o-C_a曲线)的响应规律,以小麦Z39-118为材料,分析了小麦叶片在2%和21%O_2浓度下的光合速率(A_c)和电子传递速率(J)对CO_2浓度的响应曲线。结果表明,光合作用对CO_2浓度的响应新模型(模型I)可很好地拟合小麦的A_c对CO_2浓度响应曲线;同样,基于模型I而构建的J对CO_2的响应模型(模型II),也可很好地拟合小麦在21%和2%O_2条件下的J对CO_2响应曲线。利用模型II分别拟合基于传统公式(J_o=2[J-4(A_c+R_(day))]/3)得到的J_o-C_a曲线(R_(day)为日呼吸速率)及基于光呼吸速率值而计算得到的J_o-C_a曲线,结果显示,两者拟合得到的分配到光呼吸的最大电子传递速率值(分别为86.93和84.17μmol·m~(-2)·s~(-1))与实测值(89.12μmol·m~(-2)·s~(-1))均较为接近(P>0.05);但基于前者拟合所得到的饱和CO_2浓度和CO_2为0μmol·mol~(-1)时分配到光呼吸的电子传递速率,均与其对应的测量值之间均存在显著差异(P<0.05)。综合分析认为,传统用于计算参与光呼吸途径的光合电子流公式并不能准确地描述J_o对CO_2浓度的响应趋势,本研究构建的新模型可准确地定量研究光呼吸及其电子流分配等问题。
        Photosynthetic electron flow allocation plays a key role in regulation of the photosynthetic metabolic process. To investigate the CO_2-response of photosynthetic electron flows of partitioning photorespiration pathway(J_o-C_a curves), CO_2-response curves of electron transport rate and of photosynthesis for wheat(Triticum aestivum L. cv. Z39-118)(under 2% and 21% O_2) were simultaneously measured by Li-6400-40. Results showed that the new CO_2-response of photosynthesis(termed as model I) fits the CO_2-response curve of photosynthesis of wheat well. Similarly, the CO_2-response curves of electron transport rate based on model I(termed as model II) can also fit the CO_2-response of photosynthetic electron transport rate of wheat under 21% and 2% O_2(J-C_a curves) well. The model II was used to fit the J_o-C_a curves based on the traditional formula and the J_o-C_a curves were calculated based on the measured values of the photorespiration rate, respectively. Results indicated that the maximum electron transport rate allocated to photorespiration was 86.93 and 84.17 μmol·m~(-2)·s~(-1), respectively, which was close to the measured value(89.12 μmol·m~(-2)·s~(-1))(P>0.05). However, there were significant differences between the saturating CO_2 concentration corresponding the maximum electron transport rate allocated to photorespiration at 0 mol·mol~(-1) CO_2 and the measured values(P<0.05). Our results demonstrated that the traditional formula for calculating the photosynthetic electron flow of the photorespiration pathway can not accurately characterize the trend of J_o-C_a curves, while the model II can accurately investigate the photorespiration and the photosynthetic electron flow allocation to photorespiratory pathway.
引文
[1]IDSO S B,KIMBALL B A.Downward regulation of photosynthesis and growth at high CO2 levels [J].Plant Physiology,1991,96(3):990.
    [2]BETTI M,BAUWE H,BUSCH F A,et al.Manipulating photorespiration to increase plant productivity:Recent advances and perspectives for crop improvement [J].Journal of Experimental Botany,2016,67(10):2977.
    [3]HAGEMANN M,BAUWE H.Photorespiration and the potential to improve photosynthesis [J].Current Opinion in Chemical Biology,2016,35(9):110.
    [4]刘征,赵彦宏.植物光呼吸及其支路建立的研究进展[J].西北植物学报,2011,31(6):1282.LIU Z,ZHAO Y H.Progresses on photorespiration and establishment of photorespiratory bypass [J].Acta Botanica Boreali-Occidentalia Sinica,2011,31(6):1282.
    [5]BLOOM A J.Photorespiration and nitrate assimilation:A major intersection between plant carbon and nitrogen [J].Photosynth Research,2015,123(2):118.
    [6]EHLERS I,AUGUSTI A,BETSON TR,et al.Detecting long-term metabolic shifts using isotopomers:CO2-driven suppression of photorespiration in C3 plants over the 20th century [J].The Proceedings of the National Academy of Sciences of the United States of America,2015,112(51):15585.
    [7]CUI L,LU Y,LI Y,et al.Overexpression of glycolate oxidase confers improved photosynthesis under high light and high temperature in rice [J].Frontiers in Plant Science,2016,7(171):1165.
    [8]HODGES M,DELLERO Y,KEECH O,et al.Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network [J].Journal of Experimental Botany,2016,67(10):3016.
    [9]张智胜,彭新湘.光呼吸的功能及其平衡调控[J].植物生理学报,2016,52(11):1693.ZHANG Z S,PENG X X.Multifunctional roles of photorespiration and its regulation for the balance [J].Plant Physiology Journal,2016,52(11):1693.
    [10]WATANABE C K A,YAMORI W,TAKAHASHI S,et al.Mitochondrial alternative pathway-associated photoprotection of photosystem II is related to the photorespiratory pathway [J].Plant & Cell Physiology,2016,57(7):1427.
    [11]CHATTERJEE,A,HUMA B,SHAW R,et al.Reconstruction of Oryza sativa indicia genome scale metabolic model and its responses to varying rubisco activity,light intensity,and enzymatic cost conditions [J].Frontiers in Plant Science,2017,8:2060,10.3389/fpls.2017.02060
    [12]康华靖,王巍伟,权伟,等.小麦旗叶光呼吸对光强和CO2浓度的响应[J].麦类作物学报,2013,33(6):1214.KANG H J,WANG W W,QUAN W,et al.The response of photorespiration of wheat flag leaf to light intensities and CO2 concentrations [J].Journal of Triticeae Crops,2013,33(6):1214.
    [13]ZHANG C H,ZHANG L T,LIU J G.The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis(Chlorophyceae) [J].Plant Physiology and Biochemistry,2016,107:76.
    [14]SCHIMITZ J,SRIKANTH N V,HDIG M,et al.The ancestors of diatoms evolved a unique mitochondrial dehydrogenase to oxidize photorespiratory glycolate [J].Photosynthesis Research,2017,132:184.
    [15]叶子飘,王怡娟,王令俐,等.大豆叶片光呼吸对光强和CO2浓度的响应[J].生态学杂志,2017,36(9):2538.YE Z P,WANG Y J,WANG L L,et al.Quantitative investigating on the response of photorespiration for Glycine max leaves to light intensities and CO2 concentrations [J].Chinese Journal of Ecology,2017,36(9):2538.
    [16]CROUS Y K,ZARAGOZA C J,ELLSWORTH D S,et al.Light inhibition of leaf respiration in field-grown Eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought [J].Plant,Cell & Environment,2012,35:980.
    [17]KAWASAKI S I,TOMINAGAA J,YABUTAA S,et al.Responses of growth,photosynthesis,and associated components to hypoxia at different light intensities in red leaf lettuce [J].Scientia Horticulturae,2015,193:335.
    [18]CHENG L L,FUCHIGAMI L H,BREEN P J.The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves [J].Journal of Experimental Botany,2001,52:1870.
    [19]EPRON D,GODARD D,CORNIC G,et al.Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species(Fagus sylvatica L.and Castanea sativa Mill.) [J].Plant,Cell & Environment,1995,18:45.
    [20]LONG S P,BERNACCHI C J.Gas exchange measurements,what can they tell us about the underlying limitations to photosynthesis procedures and sources of error [J].Journal of Experimental Botany,2003,54,2395.
    [21]FILA G,BADECK F W,MEYER S,et al.Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants,before and after ex vitro acclimatization [J].Journal of Experimental Botany,2006,57:2688.
    [22]PETERSON R B.Partitioning of non-cyclic photosynthetic electron transport to O2-dependent dissipative processes as probed by fluorescence and CO2 exchange [J].Plant Physiology,1989,90:1325.
    [23]叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):730.YE Z P.A review on modeling of responses of photosynthesis to light and CO2 [J].Chinese Journal of Plant Ecology,2010,34(6):730.
    [24]YE Z P,SUGGETT J D,ROBAKOWSKI P,et al.A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of PS II in C3 and C4 species [J].New Phytologist,2013,152:1255.
    [25]LANIGAN G J,BETSON N,GRIFFITHS H,et al.Carbon isotope fractionation during photorespiration and carboxylation in senecio [J].Plant Physiology,2008,148:2015.
    [26]汪义龙,夏莹萍,张洁,等.根据光合作用能量代谢测定光呼吸的方法研究[J].植物生理学报,2014,50(8):1252.WANG Y L,XIA Y P,ZHANG J,et al.A method to calculate the photorespiration based on photosynthesis energy metabolism [J].Plant Physiology Journal,2014,50(8):1252.
    [27]XU M,SHI N,LI Q,et al.An active supercomplex of NADPH dehydrogenase mediated cyclic electron flow around photosystem I from the panicle chloroplast of Oryza sativa [J].Acta Biochimica et Biophysica Sinica,2014,46(9):758.
    [28]薛娴,许会敏,吴鸿洋,等.植物光合作用循环电子传递的研究进展[J].植物生理学报,2017,53(2):156.XU X,XU H M,WU H Y,et al.Research progress of cyclic electron transport in plant photosynthesis [J].Plant Physiology Journal,2017,53(2):156.
    [29]LOGAN B A,DEMMING-ADAMS B,ADAMS W W,et al.Antioxidants and xanthopyll cycle-dependent energy dissipation in Cucurbita pepo L.and Vinca major allimated to four growth PPFDs in the field [J].Journal of Experimental Botany,1998,49:1869.
    [30]LIN Z F,PENG C L,SUN Z J,et al.The influence of light intensity on photosynthetic electron transport partitioning in photorespiration for four subtropical forest species [J].Science China(Ser C),2000,30(1):72.
    [31]KRALL J P,EDWARD G E.Relationship between photosystem II activity and CO2 fixation in leaves [J].Physiologia Plantarum,1992,86:180.
    [32]KOZAKI A,TAKEBA G.Photorespiration protects C3 plants from photooxidation [J].Nature,1996,384:557.
    [33]康华靖,李红,陶月良,等.气体交换与荧光同步测量估算植物光合电子流的分配[J].生态学报,2015,35(4):1217.KANG H J,LI H,TAO Y L,et al.Discussion on simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for estimating photosynthetic electron allocation [J].Acta Ecologica Sinica,2015,35(4):1217.
    [34]FARQUHAR G D,von CAEMMERER S,BERRY J A.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species [J].Planta,1980,149(1):78.
    [35]管雪强,赵世杰,李德全,等.干旱胁迫下抑制光呼吸对‘赤霞珠’葡萄光抑制的影响[J].园艺学报,2004,31(4):433.GUAN X Q,ZHAO S J,LI D Q,et al.The effect of inhibited photorespiration on photoinhibition in ‘Cabernet Sauvignon’(Vitis vinefera L.cv.) under drought stress [J].Acta Horticulturae Sinica,2004,31(4):433.
    [36]LORETO F,DELFINE S,DI-MARCO G.Estimation of photorespiratory carbon dioxide recycling during photosynthesis [J].Australian Journal of Plant Physiology,1999,26(8):733.
    [37]LORETO F,VELIKOVA V B,MARCO G D A.Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maize leaves [J].Australian Journal of Plant Physiology,2001,28(11):1103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700