木薯渣纳米纤维素的制备与表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Characterization of Cassava Residue Nanocellulose
  • 作者:黄丽婕 ; 张晓晓 ; 徐铭梓 ; 安书香 ; 李春颖 ; 赵含宇 ; 徐豪
  • 英文作者:HUANG Li-jie;ZHANG Xiao-xiao;XU Ming-zi;AN Shu-xiang;LI Chun-ying;ZHAO Han-yu;XU Hao;Key Laboratory of Clean Pulp and Paper and Pollution Control, College of Light Industry and Food Engineering, Guangxi University;
  • 关键词:木薯渣 ; 淀粉酶 ; 漂白 ; 纳米纤维素
  • 英文关键词:cassava residue;;amylase;;bleaching;;nanocellulose
  • 中文刊名:BZGC
  • 英文刊名:Packaging Engineering
  • 机构:广西大学轻工与食品工程学院广西清洁化制浆造纸与污染控制重点实验室;
  • 出版日期:2019-08-10
  • 出版单位:包装工程
  • 年:2019
  • 期:v.40;No.405
  • 基金:广西清洁化制浆造纸与污染控制重点实验室开放基金(ZR201806-6);; 2018—2020年广西本科高校特色专业及实验实训教学基地(中心)建设项目(T3050094101)
  • 语种:中文;
  • 页:BZGC201915003
  • 页数:8
  • CN:15
  • ISSN:50-1094/TB
  • 分类号:25-32
摘要
目的为了增加木薯渣的废物利用途径,对木薯渣进行高值化利用,制备木薯渣纳米纤维素,并对其进行表征。方法以木薯渣为原料,对其进行酶处理和漂白处理,随后采用高压均质法制备纳米纤维素,再通过扫描电镜、透射电子显微镜、原子力显微镜、红外光谱、X-射线衍射仪和热稳定性分析对木薯渣进行表征分析。结果木薯渣经过酶解和漂白后,纤维素质量分数从20.21%增加到77.39%,淀粉质量分数从50.39%降低到1.87%,半纤维素质量分数从18.38%降低到5.11%,木质素质量分数从3.69%降低到0.74%。结论木薯渣纤维在103.425 MPa下均质30次后成功制备出了纳米纤维素,透射电子显微镜和原子力显微镜结果表明,CNF的直径为10nm左右。淀粉酶处理、漂白和高压均质并没有改变木薯渣纤维的晶型结构,仍为纤维素I型。
        The work aims to prepare and characterize nanocellulose from cassava residue, so as to increase the way of making good use of cassava residue for its high-value utilization. Nanocellulose was prepared from cassava residue by high pressure homogenization after enzyme treatment and bleaching. The cassava residue was characterized and analyzed by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, infrared spectroscopy,X-ray diffractometry and thermal stability analysis. After enzymatic hydrolysis and bleaching, the cellulose content increased from 20.21% to 77.39%, the starch content decreased from 50.39% to 1.87%, the hemicellulose content decreased from 18.38% to 5.11%, and the lignin content decreased from 3.69% to 0.74%. The cassava residue fibers are homogenized at 103.425 MPa for 30 times and successfully prepare nanocellulose. The results of transmission electron microscopy and atomic force microscopy indicate that, the diameter of CNF is about 10 nm. However, amylase treatment, bleaching and high pressure homogenization do not change the crystal structure of cassava residue fiber, and it is still cellulose I.
引文
[1]刘虎,汤小朋,方热军.木薯渣再利用研究进展[J]中国猪业,2016,11(5):52-55.LIU Hu,TANG Xiao-peng,FANG Re-jun.Research Progress in the Reuse of Cassava Residues[J].China Pig Industry,2016,11(5):52-55.
    [2]张婷,陈小伟,赵优萍,等.木薯副产物综合利用现状及发展趋势[J].食品工业科技,2019,40(8):343-349.ZHANG Ting,CHEN Xiao-wei,ZHAO You-ping,et al.Status and Development Trend of Comprehensive Utilization of Cassava By-products[J].Science and Technology of Food Industry,2019,40(8):343-349.
    [3]DE A L P M B,VéRAS R M L,VéRAS A S C,et al.Different Roughage:Concentrate Ratios with and without Liquid Residue of Cassava for Lambs[J].Tropical Animal Health and Production,2018,50(8):1807-1814.
    [4]胡宇枫,巩雪,刘喜纯,等.添加剂对可食性蔬菜纸耐折度的影响[J].包装工程,2018,39(11):54-59.HU Yu-feng,GONG Xue,LIU Xi-chun,et al.Effect of Additives on the Folding Resistance of Edible Vegetable Papers[J].Packaging Engineering,2018,39(11):54-59.
    [5]CHENG J,LIN R,DING L,et al.Fermentative Hydrogen and Methane Cogeneration from Cassava Residues:Effect of Pretreatment on Structural Characterization and Fermentation Performance[J].Bioresource Technology,2015,179:407-413.
    [6]刘晓峰,李莉,徐新.木薯渣综合利用研究进展[J].山东食品发酵,2014(4):19-21.LIU Xiao-feng,LI Li,XU Xin.Research Progress in Comprehensive Utilization of Cassava Dregs[J].Shandong Food Fermentation,2014(4):19-21.
    [7]KOSUGI A,KONDO A,UEDA M,et al.Production of Ethanol from Cassava Pulp via Fermentation with a Surface-engineered Yeast Strain Displaying Glucoamylase[J].Renewable Energy,2009,34(5):1354-1358.
    [8]RATTANACHOMSRI U,TANAPONGPIPAT S,EURWILAICHITR L,et al.Simultaneous Non-thermal Saccharification of Cassava Pulp by Multi-enzyme Activity and Ethanol Fermentation by Candida Tropicalis[J].Journal of Bioscience and Bioengineering,2009,107(5):488-493.
    [9]刘书钗.制浆造纸分析与检测[M].北京:化学工业出版社,2004.LIU Shu-chai.Analysis and Testing of Pulp and Paper[M].Beijing:Chemical Industry Press,2004.
    [10]中国疾病预防控制中心营养与食品安全所,北京市疾病预防控制中心.食品中淀粉的测定[Z].中华人民共和国卫生部,中国国家标准化管理委员会,2008.Institute of Nutrition and Food Safety,Chinese Center for Disease Control and Prevention,Beijing Municipal Center for Disease Control and Prevention.Determination of Starch in Food[Z].Ministry of Health of the People's Republic of China,China National Standardization Administration.2008.
    [11]SEGAL L,CREELY J,MARTIN JR A,et al.An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer[J].Textile Research Journal,1959,29(10):786-794.
    [12]KARIMI S,TAHIR P M,KARIMI A,et al.Kenaf Bast Cellulosic Fibers Hierarchy:A Comprehensive Approach from Micro to Nano[J].Carbohydrate Polymers,2014,101(2):878-885.
    [13]尚谦,王英辉,张瑞杰,等.酶法降解木薯渣效果的实验研究[J].环境科学与技术,2017,40(1):31-36.SHANG Qian,WANG Ying-hui,ZHANG Rui-jie,et al.Experimental Study on the Effect of Enzymatic Degradation of Cassava Dregs[J].Environmental Science and Technology,2017,40(1):31-36.
    [14]刘潇.花生壳纳米纤维素的制备、表征及其对淀粉膜性能的影响[D].泰安:山东农业大学,2015.LIU Xiao.Preparation and Characterization of Peanut Shell Nanocellulose and Its Effect on the Performance of Starch Membrane[D].Taian:Shandong Agricultural University,2015.
    [15]SUDHA A,SIVAKUMAR V,SANGEETHA V,et al.Physicochemical Treatment for Improving Bioconversion of Cassava Industrial Residues[J].Environmental Progress&Sustainable Energy,2017,37(1):577-583.
    [16]SAELEE K,YINGKAMHAENG N,NIMCHUA T,et al.An Environmentally Friendly Xylanase-assisted Pretreatment for Cellulose Nanofibrils Isolation from Sugarcane Bagasse by High-pressure Homogenization[J].Industrial Crops&Products,2016,82:149-160.
    [17]谭瑶.硅烷偶联剂KH550改性纳米纤维素及其增强水性丙烯酸复合涂料研究[D].哈尔滨:东北林业大学,2016.TAN Yao.Study on Silane Coupling Agent KH550Modified Nanocellulose and Its Reinforced Waterborne Acrylic Composite Coating[D].Harbin:Northeast Forestry University,2016.
    [18]PANYASIRI P,YINGKAMHAENG N,LAM N T,et al.Extraction of Cellulose Nanofibrils from Amylase-treated Cassava Bagasse Using High-pressure Homogenization[J].Cellulose,2018,25(3):1-12.
    [19]MONDRAGON G,FERNANDES S,RETEGI A,et al.A Common Strategy to Extracting Cellulose Nanoentities from Different Plants[J].Industrial Crops&Products,2014,55(4):140-148.
    [20]CHIRAYIL C J,JOY J,MATHEW L,et al.Isolation and Characterization of Cellulose Nanofibrils from Helicteres Isora Plant[J].Industrial Crops&Products,2014,59(2):27-34.
    [21]曹英,夏文,李积华,等.超微粉碎处理对木薯淀粉结构及消化特性的影响[J].食品工业科技,2019,40(7):30-34.CAO Ying,XIA Wen,LI Ji-hua,et al.Effects of Ultrafine Pulverization on the Structure and Digestion Characteristics of Tapioca Starch[J].Science and Technology of Food Industry,2019,40(7):30-34.
    [22]LI Q,RENNECKAR S.Supramolecular Structure Characterization of Molecularly Thin Cellulose I Nanoparticles[J].Biomacromolecules,2011,12(3):650-659.
    [23]LACERDA L G,ALMEIDA R R,DEMIATE I M,et al.Thermoanalytical and Starch Content Evaluation of Cassava Bagasse as Agro-industrial Residue[J].Brazilian Archives of Biology&Technology,2009,52:143-150.
    [24]LACERDA L G,AZEVEDO J A M,CARVALHOFILHO M A D S,et al.Thermal Characterization of Partially Hydrolyzed Cassava(Manihot Esculenta)Starch Granules[J].Brazilian Archives of Biology and Technology,2008,51(6):1209-1215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700