Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructures and High Temperature Tensile Properties of Ti-43Al-4Nb-1.5Mo Alloy in the Canned Forging and Heat Treatment Process
  • 作者:李天瑞 ; 刘国怀 ; 徐莽 ; 牛红志 ; 付天亮 ; 王昭东 ; 王国栋
  • 英文作者:LI Tianrui;LIU Guohuai;XU Mang;NIU Hongzhi;FU Tianliang;WANG Zhaodong;WANG Guodong;State Key Laboratory of Rolling and Automation,Northeastern University;School of Materials Science and Engineering,Northeastern University;
  • 关键词:TiAl合金 ; 包套锻造 ; 热处理 ; 微观组织 ; 力学性能
  • 英文关键词:TiAl alloy;;canned forging;;heat treatment;;microstructure;;mechanical property
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:东北大学轧制技术与连轧自动化国家重点实验室;东北大学材料科学与工程学院;
  • 出版日期:2017-09-11
  • 出版单位:金属学报
  • 年:2017
  • 期:v.53
  • 基金:国家重点研发计划项目Nos.2016YFB0301200和2016YFB0300603;; 国家自然科学基金项目No.51504060;; 中央高校基本科研业务费项目No.N140703003;; 辽宁省科技项目博士启动基金项目No.201501150~~
  • 语种:中文;
  • 页:JSXB201709004
  • 页数:10
  • CN:09
  • ISSN:21-1139/TG
  • 分类号:33-42
摘要
对Ti-43Al-4Nb-1.5Mo合金进行包套锻造和后续热处理实验,考察了该过程TiAl合金的热变形行为、流变软化机制以及热处理参数对微观组织和力学性能的影响。结果表明,TiAl合金包套锻造过程的高温流变软化以β相协调变形、片层相变分解、g相内位错滑移以及孪晶诱导的动态再结晶为主,最终组织为残余α_2/γ层片和等轴α_2、γ、B2相的混合组织。随热处理温度的升高,热变形组织由残余α_2/γ层片和多相混合组织转变为α_2/γ层片+γ相组织,在较高的温度下(1300℃)转变为全层片组织。其中,B2相随着溶质扩散程度的增加逐渐消失,残余层片组织发生分解转变为等轴α_2/γ层片团,同时发生γ→α转变,形成全层片组织。对热等静压、锻态和热处理试样的高温(800℃)拉伸性能进行比较,经热处理后获得的全片层组织具有最佳的综合性能,抗拉强度为663 MPa,延伸率达到26%。分析该样品的断裂行为可知,由于存在层片扭曲拉长、微孔钝化以及裂纹曲折延伸的断裂机制,全层片组织具有良好强度-塑性的综合力学性能。另外,热加工过程中(高温)bcc结构B2相能够协调变形,但服役条件下硬脆的B2相作为裂纹源容易引起裂纹萌生,对力学性能极其不利。因此,TiAl合金在热变形和服役过程中需要对组成相进行严格控制,从而获得良好的力学性能。
        TiAl alloys are highly promising for high temperature structural application due to their excellent mechanical properties.However,the widespread applications of TiAl alloys have been limited for their low temperature brittleness and poor workability.The further thermo-mechanical treatments is applied for fine microstructures and improved ductility to promote the commercial applications,during which the investigations of hot deformation behavior and microstructural evolution are necessary for the improved microstructure and mechanical properties.The canned forging and subsequent heat treatments of Ti-43Al-4Nb-1.5Mo alloy have been conducted,during which the hot deformation behavior,flow softening mechanism,microstructure evolution and mechanical properties were investigated.The results show that the flow softening process of the canned forging TiAl alloy can be attributed to the soft β phase,α_2/γ lamellae decomposition and the dynamic recrystallization induced by dislocation slipping and twinning in g phase,and the final microstructure is composed of remnant α_2/γ lamellae and equiaxed α_2,γ and B2 phases.With the increasing heat treatment temperature,the microstructure changes from the multiphase structure(remnant α_2/γ lamellar,equiaxed α_2,g and B2 phases) at 1250 ℃ to the α_2/γ lamellar and g phase at 1285 ℃,and then the fully α_2/γ lamellar structure at 1300 ℃,during which the B2 phase is gradually dissolved due to the solution diffusion,and the remnant α_2/γ lamellae change to equiaxed α_2/γ colonies according to the α_2/γ→γ+α_2+B2 transition,and the final fully α_2/γ lamellar structure is promoted by g→a transition at high temperature.Moreover,the tensile tests of the hot isostatic pressed(HIPed)samples,canned forged and heat treated samples at 800 ℃ are conducted,in which the fully lamellar structure shows the high properties with the ultimate strength of 663 MPa and the elongation of 26%.The deformation process of the fully α_2/γ lamellar can be strengthened by the lamellae twisting,microvoid inhibition and wavy growth of the cracks,leading to the optimal high temperature performance.Moreover,the disordered bcc b phase can promote the deformation during the hot working process at the high temperature(≥1200 ℃),while the hard-brittle B2 phase severely deteriorates the service properties,which should be controlled accurately for the high mechanical properties during the thermo-mechanical processing.
引文
[1]Dimiduk D M.Gamma titanium aluminide alloys——An assessment within the competition of aerospace structural materials[J].Mater.Sci.Eng.,1999,A263:281
    [2]Wu X H.Review of alloy and process development of Ti Al alloys[J].Intermetallics,2006,14:1114
    [3]Chen Y Y,Su Y J,Kong F T.Research progress in preparation of Ti Al interemetallic based compound[J].Rare Met.Mater.Eng.,2014,43:757(陈玉勇,苏勇君,孔凡涛.Ti Al金属间化合物制备技术的研究进展[J].稀有金属材料与工程,2014,43:757)
    [4]Yang R.Advances and challenges of Ti Al base alloys[J].Acta Metall.Sin.,2015,51:129(杨锐.钛铝金属间化合物的进展与挑战[J].金属学报,2015,51:129)
    [5]Tetsui T,Shindo K,Kobayashi S,et al.A newly developed hot worked Ti Al alloy for blades and structural components[J].Scr.Mater.,2002,47:399
    [6]Liu G H,Wang Z D,Fu T L,et al.Study on the microstructure,phase transition and hardness for the Ti Al-Nb alloy design during directional solidification[J].J.Alloys Compd.,2015,650:45
    [7]Tetsui T,Shindo K,Kobayashi S,et al.Strengthening a highstrength Ti Al alloy by hot-forging[J].Intermetallics,2003,11:299
    [8]Kim H Y,Hong S H.Effect of microstructure on the high-temperature deformation behavior of Ti-48Al-2W intermetallic compounds[J].Mater.Sci.Eng.,1999,A271:382
    [9]Kim H Y,Hong S H.High temperature deformation behavior and microstructural evolution of Ti-47Al-2Cr-4Nb intermetallic alloys[J].Scr.Mater.,1998,38:1517
    [10]Takeyama M,Kobayashi S.Physical metallurgy for wrought gamma titanium aluminides:Microstructure control through phase transformations[J].Intermetallics,2005,13:993
    [11]Jiang H T,Zeng S W,Zhao A M,et al.Hot deformation behavior of b phase containing g-Ti Al alloy[J].Mater.Sci.Eng.,2016,A661:160
    [12]Liu B,Liu Y,Li Y P,et al.Thermomechanical characterization of b-stabilized Ti-45Al-7Nb-0.4W-0.15B alloy[J].Intermetallics,2011,19:1184
    [13]Lin J P,Zhang L Q,Song X P,et al.Status of research and development of light-weight g-Ti Al intermetallic based compounds[J].Mater.China,2010,29(2):1(林均品,张来启,宋西平等.轻质g-Ti Al金属间化合物的研究进展[J].中国材料进展,2010,29(2):1)
    [14]Clemens H,Wallgram W,Kremmer S,et al.Design of novel bSolidifying Ti Al alloys with adjustable b/B2-phase fraction and excellent hot-workability[J].Adv.Eng.Mater.,2008,10:707
    [15]Tetsui T,Kobayashi T,Harada H.Achieving high strength and low cost for hot-forged Ti Al based alloy containing b phase[J].Mater.Sci.Eng.,2012,A552:345
    [16]Chen G L,Xu X J,Teng Z K,et al.Microsegregation in high Nb containing Ti Al alloy ingots beyond laboratory scale[J].Intermetallics,2007,15:625
    [17]Liu Z C,Lin J P,Li S J,et al.Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing Ti Al base alloys[J].Intermetallics,2002,10:653
    [18]Kim Y W,Rosenberger A,Dimiduk D M.Microstructural changes and estimated strengthening contributions in a gamma alloy Ti-45Al-5Nb pack-rolled sheet[J].Intermetallics,2009,17:1017
    [19]Niu H Z,Kong F T,Chen Y Y,et al.Microstructure characterization and tensile properties of b phase containing Ti Al pancake[J].J.Alloys Compd.,2011,509:10179
    [20]Yang F,Kong F T,Chen Y Y,et al.Effect of heat treatment on microstructure and properties of as-forged Ti Al alloy with b phase[J].Rare Met.Mater.Eng.,2011,40:1505
    [21]Schwaighofer E,Clemens H,Mayer S,et al.Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase g-Ti Al based alloy[J].Intermetallics,2014,44:128
    [22]Jin Y G,Wang J N,Yang J,et al.Microstructure refinement of cast Ti Al alloys by b solidification[J].Scr.Mater.,2004,51:113
    [23]Liu G H,Li X Z,Su Y Q,et al.Microstructure,microsegregation pattern and the formation of B2 phase in directionally solidified Ti-46Al-8Nb alloy[J].J.Alloys Compd.,2012,541:275
    [24]Niu H Z,Chen Y Y,Xiao S L,et al.High temperature deformation behaviors of Ti-45Al-2Nb-1.5V-1Mo-Y alloy[J].Intermetallics,2011,19:1767
    [25]Zong Y Y,Wen D S,Liu Z Y,et al.g-phase transformation,dynamic recrystallization and texture of a forged Ti Al-based alloy based on plane strain compression at elevated temperature[J].Mater.Des.,2016,91:321
    [26]Zhang W J,Lorenz U,Appel F.Recovery,recrystallization and phase transformations during thermomechanical processing and treatment of Ti Al-based alloys[J].Acta Mater.,2000,48:2803
    [27]Peng Y B,Chen F,Wang M Z,et al.Relationship between mechanical properties and lamellar orientation of PST crystals in Ti-45Al-8Nb alloy[J].Acta Metall.Sin.,2013,49:1457(彭英博,陈锋,王敏智等.Ti-45Al-8Nb合金PST晶体片层取向与力学性能的关系[J].金属学报,2013,49:1457)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700