泥质砂岩在循环荷载作用下能量响应规律的试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EXPERIMENTAL STUDY ON ENERGY RESPONSE OF ARGILLACEOUS SANDSTONE UNDER CYCLIC LOADING
  • 作者:杜瑞锋 ; 裴向军 ; 张晓超 ; 贾俊 ; 陈俊宇
  • 英文作者:DU Ruifeng;PEI Xiangjun;ZHANG Xiaochao;JIA Jun;CHEN Junyu;State Key Laboratory of Geo-hazards Prevention and Geo-environment Protection,Chengdu University of Technology;Civil Engineering Department,Inner Mongolia Technical College of Construction;Key Laboratory for Geo-hazards in Loess Area,MLR/Xi'an Center of Geological Survey,China Geological Survey;
  • 关键词:泥质砂岩 ; 弹性能 ; 耗散能 ; 能量响应规律
  • 英文关键词:Argillaceous sandstone;;Elastic energy;;Dissipated energy;;Energy response law
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:地质灾害防治与地质环境保护国家重点实验室(成都理工大学);内蒙古建筑职业技术学院建筑工程学院;国土资源部黄土地质灾害重点实验室/中国地质调查局西安地质调查中心;
  • 出版日期:2019-06-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:v.27;No.131
  • 基金:国家重点研发计划(2017YFC1501002);; 中国地质调查局“吕梁山区城镇地质灾害调查”项目(DD20160276);; 国家创新研究群体科学基金(41521002)资助~~
  • 语种:中文;
  • 页:GCDZ201903006
  • 页数:11
  • CN:03
  • ISSN:11-3249/P
  • 分类号:32-42
摘要
目前应用能量原理研究岩体结构的破坏、变形及稳定性是岩石力学领域研究的重点。为了研究泥质砂岩在循环荷载作用下3类能量——单位体积能、单位体积弹性能和单位体积耗散能的响应规律,开展了考虑动应力频率、围压和动应力幅值影响的循环加卸载试验。试验结果表明,3类能量在同一频率、不同围压下具有相同的能量响应规律。随着频率的增加,单位体积能、单位体积弹性能和单位体积耗散能随循环次数的响应规律呈现出有规律的波动性;累计单位体积能和单位体积弹性能随循环次数近似线性发展,而累计耗散能呈现出更强的非线性特点。采用了能量速率指标来衡量3类能量的变化程度,频率越高,3类能量的变化速率越大。在能量速率-时间曲线中存在明显的突变点,初步分析为岩样内部或表面裂缝发展的阈值点。通过对影响耗散能的因素分析可知,耗散能与围压、动应力频率和动应力幅值之间均为正增长趋势。结合相关文献的分析结果,综合分析了从循环开始到岩石最终破坏之间全部周期内的3类能量的响应规律,阐明了岩样在循环荷载作用下的能量响应规律,有助于深化对泥质砂岩能量响应规律、损伤及破坏的认识,为应用能量原理分析岩体工程的稳定性提供试验依据和应用指导。
        At present,the application of energy principle to study the failure,deformation and stability of rock mass is the focus of rock mechanics research. This paper aims to study the response laws of three kinds of energy of argillaceous sandstone. They are the volumetric energy per unit,the volumetric elastic energy per unit and the volumetric dissipated energy per unit under cyclic loading. The loading and unloading test is carried out considering different frequencies,confining pressures and stress amplitudes. The test results show that the three kinds of energy response to number of cycles have the same performance with different pressures and same frequency. With the increase of frequency,the three kinds of energy response laws to number of cycles show regular volatility.Performance among accumulated volumetric energy,accumulated volumetric elastic energy and number of cycles is approximately linear. The accumulated volumetric dissipated energy is strongly characterized by nonlinearity. The energy rate index is used to measure the degree of energy change. The higher the frequency,the greater the change of the energy rate. There are sudden change points in the curve of volumetric dissipated energy rate versus time,preliminary speculated to be the threshold point for the development of cracks in the inner or surface of the rock sample. Through the analysis of the factors affecting dissipated energy,we can find that the positive increasing trends are shown among confining pressure, frequency, dynamic stress amplitude and dissipated energy respectively. Based on the analysis results of relevant literatures, three kinds of energy response laws are comprehensively analyzed from the beginning of the cycle to the final failure of the rock. The energy response laws of the rock sample under cyclic loading are clarified. It is helpful to deepen the understanding of the energy response law,damage and failure of argillaceous sandstone,and provide experimental basis and application guidance for analyzing the stability of rock mass engineering using energy principle.
引文
Chai B,Yin K L,Li X.2012.Experimental study on rock energy dissipation of the middle triassi Badong formation[J].Journal of Engineering Geology,20(6):1013-1019.
    Chen G Q,Jian D H,Xu P,et al.2018.Energy characteristics of brittle failure of granite rock bridge under unloading compression[J].Journal of Engineering Geology,26(3):602-610.
    Chen Z Q,He C,Wu D,et al.2018.Mechanical properties and energy of deep-buried carbonaceous phyllite[J].Rock and Soil Mechanics,39(2):445-456.
    Cook N G W.1976.Seismicity associated with mining[J].Engineering Geology,10(2-4):99-122.
    Eberhardt E,Stead D,Stimpson B.1999.Quantifying progressive prepeak brittle fracture damage in rock during uniaxial compression[J].International Journal of Rock Mechanics and Mining Science,36(3):361-380.
    Ge X R,LüY F.1992.Study on fatigue failure and irreversible deformation problem of rock under cyclic load[J].Chinese Journal of Geotechnical Engineering,14(3):50-60.
    He M M,Chen Y S,Li N,et al.2015.Deformation and energy characteristics of sandstone subjected to uniaxial cyclic loading[J].Journal of China Coal Society,40(8):1805-1812.
    Jiang Y D,Li H T,Zhao Y X,et al.2014.Effect of loading rate on energy accumulation and dissipation in rocks[J].Journal of China University of Mining&Technology,43(3):269-373.
    Li L Y,Xie H P,Ju Y,et al.2011.Experimental investigation of releasable energy and dissipative energy within rock[J].Engineering Mechanics,28(3):35-40.
    Li T T.2017.Seismic damage characteristics of rock based on energy dissipation and disaster-pregnant mechanism of strong earthquake[D].Chengdu:Chengdu University of Technology.
    Li X B,Gu D S.1994.Energy dissipation of rock under impulsive loading with different waveforms[J].Explosion and Shock Waves,14(2):129-139.
    Liang C Y,Li X,Wang S X,et al.2012.Experimental investigation on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,31(9):1830-1838.
    Liang J X,Hu X W,Xu X J.2017.Particle flow simulation of earthquake induced deformation failure of soil slopes with different geological factors under earthquake[J].Journal of Engineering Geology,25(6):1537-1546.
    Luo J,Pei X J,Huang R Q,et al.2015.Influencing factors for damage degree of shattered landslide rock mass under high seismic action[J].Chinese Journal of Geotechnical Engineering,37(6):1105-1114.
    Mikhalyuk A V,Zakharov V V.1997.Dissipation of dynamic loading energy in quasi-elastic deformation processes in rocks[J].Journal of Applied Mechanics and Technical Physics,38(2):312-318.
    Munoz H,Taheri A,Chanda E K.2016.Fracture energy-based brittleness index development and brittleness quantification by prepeak strength parameters in rock uniaxial compression[J].Rock Mechanics and Rock Engineering,49(2):4587-4606.
    Pu C,Meng L P,Li T B.2017.Rupture and energy properties of phyllite under triaxial compression condition[J].Journal of Engineering Geology,25(2):359-366.
    Sujatha V,Chandra Kishen J M.2003.Energy release rate due to friction at bimaterial interface in dams[J].Journal of Engineering Mechanics,129(7):792-800.
    Tang C A.1993.Catastrophe in rock unstable failure[M].Beijing:China Coal Industry Publishing House.
    Tu Y L,Liu X R,Zhong Z L,et al.2018.The unity of three types of slope failure criteria[J].Rock and Soil Mechanics,39(1):173-180.
    Wu F Q,Wu J,Qi S W.2010.Theoretical analysis on mechanism of rock burst of brittle rock mass[J].Journal of Engineering Geology,18(5):589-595.
    Xie H P,Ju Y,Li L Y,et al.2008.Energy mechanism of deformation and failure of rock masses[J].Chinese Journal of Rock Mechanics and Engineering,27(9):1729-1730.
    Xie H P,Peng R D,Ju Y,et al.2005.On energy analysis of rock failure[J].Chinese Journal of Rock Mechanics and Engineering,24(15):2603-2608.
    Yang B C,Xue L,Wang M M.2018.An evaluation index for the fracturing effect in shale based on laboratory testing[J].Environmental Earth Sciences,(77):240.
    Yao N,Ye Y C,Wang Q H,et al.2018.Particle flow code numerical simulation of uniaxial compression mechanical behavior of gently inclined layered rock[J].Journal of Engineering Geology,26(4):835-843.
    Yao X L,Zhang Y B,Liu X X,et al.2018.Optimization method for key characteristic signal of acoustic emission in rock fracture[J].Rock and Soil Mechanics,39(1):375-384.
    柴波,殷坤龙,李想.2012.巴东组岩石能量耗散规律的实验研究[J].工程地质学报,20(6):1013-1019.
    陈国庆,简大华,徐鹏,等.2018.花岗岩岩桥卸荷脆性破坏的能量特征[J].工程地质学报,26(3):602-610.
    陈子全,何川,吴迪,等.2018.深埋碳质千枚岩力学特性及其能量损伤演化机制[J].岩土力学,39(2):445-456.
    葛修润,卢应发.1992.循环荷载作用下岩石疲劳破坏和不可逆变形问题的探讨[J].岩土工程学报,14(3):56-60.
    何明明,陈蕴生,李宁,等.2015.单轴循环荷载作用下砂岩变形特性与能量特征[J].煤炭学报,40(8):1805-1812.
    姜耀东,李海涛,赵毅鑫,等.2014.加载速率对能量积聚与耗散的影响[J].中国矿业大学学报,43(3):269-373.
    黎立云,谢和平,鞠杨,等.2011.岩石可释放应变能及耗散能的实验研究[J].工程力学,28(3):35-40.
    李天涛.2017.基于能量耗散的强震岩体震裂损伤特性及其孕灾机理研究[D].成都:成都理工大学.
    李夕兵,古德生.1994.岩石在不同加载波条件下能量耗散的理论探讨[J].爆炸与冲击,14(2):129-139.
    梁昌玉,李晓,王声星,等.2012.岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J].岩石力学与工程学报,31(9):1830-1838.
    梁敬轩,胡卸文,许晓君.2017.基于不同地质要素土质边坡的地震变形破坏颗粒流模拟[J].工程地质学报,25(6):1537-1546.
    罗璟,裴向军,黄润秋,等.2015.强震作用下滑坡岩体震裂损伤程度影响因素研究[J].岩土工程学报,37(6):1105-1114.
    蒲超,孟陆波,李天斌.2017.三轴压缩条件下千枚岩破裂与能量特征研究[J].工程地质学报,25(2):359-366.
    唐春安.1993.岩石破裂过程中的灾变[M].北京:煤炭工业出版社.
    涂义亮,刘新荣,钟祖良,等.2018.三类边坡失稳判据的统一性[J].岩土力学,39(1):173-180.
    伍法权,伍劼,祁生文.2010.关于脆性岩体岩爆成因的理论分析[J].工程地质学报,18(5):589-595.
    谢和平,鞠杨,黎立云,等.2008.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,27(9):1729-1740.
    谢和平,彭瑞东,鞠杨,等.2005.岩石破坏的能量分析初探[J].岩石力学和工程学报,24(15):2603-2608.
    姚囝,叶义成,王其虎,等.2018.缓倾斜层状岩体单轴压缩力学行为的颗粒流数值模拟[J].工程地质学报,26(6):835-843.
    姚旭龙,张艳博,刘祥鑫,等.2018.岩石破裂声发射关键特征信号优选方法[J].岩土力学,39(1):375-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700