气固流化床压力脉动信号的频域熵分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Frequency-Domain Entropy Analysis of Pressure Fluctuations in a Gas-solid Fluidized Bed
  • 作者:王建斌 ; 钟文琪
  • 英文作者:WANG Jian-Bin;ZHONG Wen-Qi;Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University;Information center, Zhaoqing University;
  • 关键词:流化床 ; 气固两相流 ; 压力脉动 ; 频域熵分析
  • 英文关键词:fluidized beds;;gas-solid flow;;pressure fluctuations;;frequency-domain entropy analysis
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室;肇庆学院信息中心;
  • 出版日期:2018-01-15
  • 出版单位:工程热物理学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金重大项目(No.51390492)
  • 语种:中文;
  • 页:GCRB201801020
  • 页数:8
  • CN:01
  • ISSN:11-2091/O4
  • 分类号:121-128
摘要
对气固流化床风室内的压力脉动信号进行频域变换,使用三种熵分析方法,研究了一个内径150 mm、高2.5m流化床不同静床高工况下的流动特性和流型特征。实验结果表明:这三个方法得到的特性曲线可以较好地判别固定/鼓泡/湍动床三个流型;在确定从鼓泡床向湍动床转变的转变点上,DFT熵方法优于小波熵和小波包熵方法,物理意义更明确且计算更快捷。
        The pressure signals measured in the plenum of a fluidized bed(i.d. 150 mm, height 2.5 m) were transformed into frequency-domain contents which were analyzed by three entropy methods in order to study the characteristic of flow dynamics and flow regimes. It shows that: the three entropy characteristic curves can distinguish the three flow regimes(i.e. fixed/bubbling/turbulent)well; The DFT Shannon entropy does better than wavelet entropy and wavelet packet entropy on marking the transition point from the bubbling bed to the turbulent bed, and it has clearer physical meaning and less computation time.
引文
[1]金涌,祝京旭,汪展文,等.流态化工程原理[M].北京:清华大学出版社,2001.Jin Yong,Zhu Jingxu,Wang Zhanwen,et al.Fluidization Engineering Principles[M].Beijing:Tsinghua University Press,2001
    [2]Johnsson F,Zijerveld R C,Schouten J C,et al.Characterization of Fluidization Regimes by Time-series Analysis of Pressure Fluctuations[J].International Journal of Multiphase Flow,2000,26(4):663-715
    [3]Van Ommen J R,Sasic S,Van der S,et al.Time-series Analysis of Pressure Fluctuations in Gas-solid Fluidized Beds-A Review[J].International Journal of Multiphase Flow,2011,37(5):403-428
    [4]郑建祥,朱秀丽.粘附性颗粒流化特性研究及信息熵分析[J].东北电力大学学报,2015(2):18-22ZHENG Jianxiang,ZHU Xiuli.Study and Application of Shannon Entropy in Analysis of Flow Behavior of Cohesive Particle Agglomerations[J].Journal of Northeast Dianli University,2015(2):18-22
    [5]钟文琪,章名耀.喷动流化床流动结构的SHANNON信息熵模糊聚类分析[J].中国电机工程学报,2005,25(7):13-17ZHONG Wenqi,ZHANG Mingyao.Application of Shannon Entropy and Fuzzy Cluster in Analysis of Flow Patterns in Spout-Fluid Bed[J].Proceedings of the CSEE,2005,25(7):13-17
    [6]黄铁伦,汪乐宇,郑燕萍,等.气固流化床中信息熵的实验研究[J].高校化学工程学报,2001,15(2):167-173HUANG Yilun,WANG Leyu,ZHENG Yanping,et al.Experimental Studies of Information Entropy in Gas-Solid Fluidized Bed[J].Journal of Chemical Engineering of Chinese Universities,2001,15(2):167-173
    [7]徐金晖,巴晓玉.气-固流化床压力脉动信号的多尺度熵分析[J].化工自动化及仪表,2015,42(10):259-262XU Jinhui,BA Xiaoyu.Multiscale Entropy Analysis of Pressure Fluctuation Signals in Gas-Solid Fluidized Bed[J].Control and Instruments in Chemical Industry,2015,42(10):259-262
    [8]Kang Y,Woo K J,Ko M H,et al.Particle Flow Behavior in Three-phase Fluidized Beds[J].Korean Journal of Chemical Engineering,1999,16(6):784-788
    [9]Zhong W Q,Zhang M Y.Characterization of Dynamic Behavior of a Spout-fluid Bed with Shannon Entropy Analysis[J].Powder Technology,2005,159(3):121-126
    [10]Zhong W Q,Jin B S,Zhang Y,et al.Description of Dynamic Behavior of a Fluidized Bed with Biomass Fuels by Shannon Entropy Increment Analysis[J].Energy&Fuels,2009,23:3167-3171
    [11]Duan F,Cong S Q.Shannon Entropy Analysis of Dynamic Behavior of Geldart Group B and Geldart Group D Particles in a Fluidized Bed[J].Chemical Engineering Communications,2013,200(4):575-586
    [12]Cho Y J,Kim S J,Nam S H,et al.Heat Transfer and Bubble Properties in Three-Phase Circulating Fluidized Beds[J].Chemical Engineering Science,2001,56(21-22):6107-6115
    [13]Li W L,Zhong W Q,Jin B S,et al.Flow Regime Identification in a Three-Phase Bubble Column Based on Statistical,Hurst,Hilbert-Huang Transform and Shannon Entropy Analysis[J].Chemical Engineering Science,2013,102(10):474-485
    [14]Sobrino C,Almendros-Ibanez J A,Santana D,et al.Maximum Entropy Estimation of the Bubble Size Distribution in Fluidized Beds[J].Chemical Engineering Science,2009,64(10):2307-2319
    [15]Nedeltchev S,Shaikh A.A New Method for Identification of the Main Transition Velocities in Multiphase Reactors Based on Information Entropy Theory[J].Chemical Engineering Science,2013,100(8):2-14
    [16]Manish P,Majumder S K.Quality of Mixing in a Downflow Bubble Column Based on Information Entropy Theory[J].Chemical Engineering Science,2009,64(8):1798-1805
    [17]Mitra S K.Digital Signal Processing:A Computer-Based Approach[M].McGraw-Hill Education,2006:188-212
    [18]Coifman R R,Wickerhauser M V.Entropy-Based Algorithms for Best Basis Selection[J].Ieee Transactions on Information Theory,1992,38(2):713-718
    [19]Misiti M,Misiti Y,Oppenheim G,et al.Wavelet Toolbox User's Guide[M].The Math Works Inc.,2013:468-485
    [20]Grace J R,Knowlton TM.Circulating fluidized beds[M].London:Chapman&Hall,1997:6-10
    [21]H.T.Bi,J.R.Grace.Effect of Measurement Method on the Velocities used to demarcate the Onset of Turbulent Fluidization[J].Chemical Engineering Journal and the Biochemical Engineering Journal,1995,57(57):261-271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700