pH对餐厨垃圾厌氧发酵产氢过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of pH on Hydrogen Production during Anaerobic Fermentation of Kitchen Waste
  • 作者:袁雨珍 ; 肖利平 ; 刘传平 ; 窦飞
  • 英文作者:YUAN Yuzhen;XIAO Liping;LIU Chuanping;DOU Fei;Department of Environmental Engineering,Xiangtan University;Guangdong Institute of Eco-Environmental Science & Technology,Guangdong Key Laboratory of Integrated Agro-Environment Pollution Control and Management;
  • 关键词:餐厨垃圾 ; 厌氧发酵 ; 产氢量 ; pH
  • 英文关键词:kitchen waste;;anaerobic fermentation;;hydrogen production;;pH
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:湘潭大学环境工程系;广东省生态环境技术研究所//广东省农业环境综合治理重点实验室;
  • 出版日期:2017-04-18
  • 出版单位:生态环境学报
  • 年:2017
  • 期:v.26
  • 基金:湖南省自然科学基金项目(13JJ202431270546)
  • 语种:中文;
  • 页:TRYJ201704021
  • 页数:6
  • CN:04
  • ISSN:44-1661/X
  • 分类号:145-150
摘要
餐厨垃圾具有含水率高、有机物含量高、易腐败等特点,若处理不当,必然造成资源浪费和环境污染。餐厨垃圾减量化、无害化、资源化处理是环境科学领域近年来关注的热点与难点。为解决餐厨垃圾的减量化问题,同时产生清洁能源——氢气,利用自制小型序批式厌氧发酵产氢反应装置,以蒸煮餐厨垃圾为发酵底物,接种污水处理厂剩余污泥进行厌氧发酵产氢,在底物与接种物质量比为4:1,温度为37℃的条件下,研究p H对蒸煮餐厨垃圾厌氧发酵产氢的影响。结果表明,厌氧发酵底物中乙酸和丁酸是挥发性酸(VFA)中主要的组成部分,占总挥发性酸的80%以上,同时含有少量的丙酸,属于典型的丁酸型发酵。初始p H为9.0时,厌氧发酵效果最佳,累积产气量和产氢量最大,分别为748 m L和371 m L;在整个厌氧发酵过程中氢气的体积分数最高可达80.5%,平均产氢速率为10.31 m L·h~(-1),单位产氢量(以VS计)为72.9 m L·g~(-1),总固体(TS)和挥发性固体(VS)的去除率分别高达26.6%和34.4%;脱氢酶的活性呈现出先增强后减弱的趋势,产氢速率与脱氢酶的活性呈正相关;发酵反应进行到16 h时,脱氢酶的活性最好,此时产氢速率最大,为19.2 m L·h~(-1)。因此,调节初始p H为9.0,可以提高餐厨垃圾产氢效率,实现餐厨垃圾减量化和产生清洁能源的双重目标。
        Due to the characteristics of kitchen waste such as high moisture content,high organic matter content,and easily for decomposition,inappropriate management of kitchen waste can cause a waste of resources and pollution to the environment.More and more attention has been paid to the reduction,harmlessness and recycling treatment of kitchen waste in recent years.In order to reduce the kitchen waste as well as produce clean energy such as hydrogen gas,the effect of p H on hydrogen production during anaerobic fermentation of steamed kitchen waste was investigated in a sequencing batch anaerobic fermentation reactor inoculated with residual sludge from wastewater treatment plant,with a substrate/inoculum ratio of 4/1 and an inoculation temperature of 37 ℃.Butyric acid and acetic acid were the most important components in the substrate,which accounted for more than 80% of the total volatile acid,and there was only a small amount of propionic acid.This suggested that it was a typical type of butyric acid fermentation process.The results showed that the optimized initial p H was 9.0,which lead to the maximum cumulative gas production rate of 748 m L and the maximum hydrogen production quantity of 371 m L.In the whole process of anaerobic fermentation,the highest hydrogen volume fraction was up to 80.5%,and the average hydrogen production rate and unit capacity of hydrogen(VS) was 10.31 m L·h~(-1) and 72.9 m L·g~(-1),respectively.The removal rate of VS and TS was up to 26.6% and 34.4%,respectively.The activity of dehydrogenase increased during 0~16 h and then decreased gradually over time,which was positively related to the hydrogen production when the initial p H was 9.0.The highest activity of dehydrogenase was detected at 16 h,when the maximum hydrogen production rate was achieved as 19.2 m L·h~(-1).Therefore,the efficiency of hydrogen production from anaerobic fermentation of kitchen waste can be improved by adjusting the initial p H,which can provide useful information for the application of clean energy production during reduction of the kitchen waste.
引文
BENEMANN J.1997.Hydrogen Biotechnology:Prospects[J].Nature Biotechnology,14:1101-1103.
    HAWKES F R,DINDALE R,HAWKES D L,et al.2002.Sustainable fermentative biohydrogen:challenges for process optimization[J].International journal of hydrogen energy,27:1339-1347.
    YU G H,HE P J,SHAO L M,et al.2008.Toward understanding the mechanism of improving the production of volatile fatty acids from activated sludge at p H 10.0[J].water research,42:4637-4644.
    KIM J K,HAN G H,OH B R,et al.2008.Volumetric scale-up of a three stage fermentation system for food waste treatment[J].Bioresource Technology,99(10):4394-4399.
    NEVES L,OLIVEIRA R,ALVES M M.2004.Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios[J].Process Biochemistry,39(12):2019-2024.
    VAN GINKEL S,SUNG S,LAY J J.2002.Biohydrogen production as a function of p H and substrate concentration[J].Environmental Science&Technology,35:4726-4730.
    蔡玮玮,张笑,王利红,等.2013.接种比例对酒糟与餐厨垃圾混合厌氧发酵产沼气的影响[J].环境工程,31(2):99-103.
    陈琛,刘敏,陈滢.2011.p H对热处理污泥厌氧发酵产氢的影响[J].环境科学与技术,34(4):163-167.
    崔亚伟,陈金发.2006.厨余垃圾的资源化现状及前景展望[J].中国资源综合利用,24(10):31-32.
    丁杰,任南琪,刘敏,等.2004.Fe和Fe2+对混合细菌产氢发酵的影响[J].环境科学,25(4):48-53.
    段妮娜,董滨,李江华,等.2013.污泥和餐厨垃圾联合干法中温厌氧消化性能研究[J].环境科学,34(1):321-327.
    李秋波,邢德峰,任南琪,等.2006.C/N比对嗜酸细菌X-29产氢能力及其酶活性的影响[J].环境科学,27(4):810-814.
    林云琴,王德汉,李庆,等.2011.造纸生化污泥和餐厨垃圾混合厌氧消化实验[J].中国造纸,30(2):29-33.
    秦智,任南琪,李建政.2004.丁酸型发酵产氢的运行稳定性[J].太阳能学报,25(1):46-50.
    王延昌,袁巧霞,谢景欢,等.2009.餐厨垃圾厌氧发酵特性的研究[J].环境工程学报,3(9):1677-1682.
    魏复盛.国家环境保护总局水和废水监测分析方法编委会.2002.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社.
    肖本益,魏源送,刘俊新.2004.微生物发酵产氢的影响因素分析[J].微生物学通报,31(3):130-135.
    徐长勇,宋薇,赵树青,等.2011.餐厨垃圾饲料化技术的同源性污染研究[J].环境卫生工程,19(1):9-10.
    袁玉玉,曹先艳,牛冬杰,等.2006.餐厨垃圾特性及处理技术[J].环境卫生工程,14(6):46-49.
    袁玉玉.2007.餐厨垃圾厌氧发酵制氢添加剂作用研究[D].上海:同济大学.
    赵明星,严群,阮文权,等.2009.碱处理对厨余垃圾厌氧发酵产氢的强化研究[J].安全与环境学报,9(5):88-91.
    郑育毅,林鸿,罗鸿信,等.2015.污泥与餐厨垃圾联合厌氧发酵产氢余物产甲烷过程底物指标变化[J].环境工程学报,9(1):425-430.
    周春生,尹军.1996.TTC-脱氢酶活性检测方法的研究[J].环境科学学报,16(4):400-405.
    周俊虎,戚峰,程军,等.2007.秸秆发酵产氢的影响因素研究[J].环境科学,28(5):1153-1157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700