镍基高温合金中γ/θ相界面性能的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation for γ/θ Interface Properties of Ni Base Superalloy
  • 作者:董卫平 ; 王琳琳 ; 王晓明 ; 张明义 ; 陈铮
  • 英文作者:Dong Weiping;Wang Linlin;Wang Xiaoming;Zhang Mingyi;Chen Zheng;Zhejiang Normal University;China Academy of Engineering Physics;State Key Laboratory of Solidification Processing, Northwestern Polytechnical University;
  • 关键词:界面 ; 界面能 ; 界面分离能 ; 界面迁移 ; 镍基高温合金
  • 英文关键词:interface;;interfacial energy;;work of separation;;interfacial migration;;Nickel base superalloy
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:浙江师范大学;中国工程物理研究院;西北工业大学凝固技术国家重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.394
  • 基金:国家自然科学基金(51501165);; 浙江省自然科学基金一般项目(LY18E010002,LY17E010002)
  • 语种:中文;
  • 页:COSE201905024
  • 页数:5
  • CN:05
  • ISSN:61-1154/TG
  • 分类号:173-177
摘要
采用分子动力学法以第二近邻嵌入原子势模型(2NN MEAM)的原子间相互作用势为输入参数,研究了Ni-Al-V高温合金中γ/θ-DO_(22)相不同成分下的界面结构,并计算了界面处不同成分下的界面能和界面分离能。研究表明:随A1原子浓度增大,界面能增大,界面分离能减少:随V原子浓度增大,界面能先增大后减小;而原子浓度改变对界面分离能影响较小;同时表明界面能和界面分离能与界面迁移密切相关。该结果可用于对Ni-Al-V高温合金沉淀过程界面的成分偏析,界面迁移等动态行为做进一步研究,对高温合金设计有极大的指导意义。
        By using molecular dynamics method with the second nearest neighbor modified embedded-atom method(2 NN MEAM)interatomic potential, we studied the γ/θ-DO_(22) interfacial structure of Ni-Al-V superalloy at different compositions, and calculated the interfacial energy and the work of separation on the interfaces. The research shows that with the A1 atom concentration increasing, the interfacial energy increases while the work of separation decreases; with the concentration of V atoms increasing, the interfacial energy increases first and then decreases; but the change of atomic concentration has little effect on the work of separation; and the interfacial energy and the work of separation are closely related to the interfacial migration. The results can be used to further study the dynamic behavior of Ni-Al-V superalloys in the process of precipitation, such as the composition segregation and interfacial migration, so the research has great guiding significance to the alloy design.
引文
[1]Wu Xiaoxia,Wang Chongyu.Computational Materials Science[J],2016,119:120
    [2]Raabe D,Herbig M,Sandl?bes S et al.Current Opinion in Solid State and Materials Science[J],2014,18:253
    [3]Babicheva Rita I,Dmitriev Sergey V,Zhang Ying et al.Computational Materials Science[J],2015,98:410
    [4]Michael A Gibson,Christopher A Schuh.Acta Materialia[J],2015,95:145
    [5]Kim Hyun-Kyu,Jung Woo-Sang,Lee Byeong-Joo.Acta Materialia[J],2009,57:3140
    [6]AndréCosta e Silva,John?gren,Maria Teresa ClavagueraMora et al.CALPHAD[J],2007,31:53
    [7]Dong Wei-ping,Kim Hyun-Kyu,Ko Won-Seok et al.CALPHAD[J],2012,38:7
    [8]Yang Kun(杨坤),Li He(李鹤),Huo Chunyong(霍春勇)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2016,46(12):3238
    [9]Dong Wei-ping,Lee Byeong-Joo,Chen Zheng.Metals and Materials International[J],2014,20:423
    [10]Dong Wei-ping,Wang Linlin,Chen Zheng.Journal of Phase Equilibria and Diffusion[J],2017,38:102
    [11]Haile J M.Molecular Dynamics Simulation:Elementary Methods[M].New York:Wiley,1992:1
    [12]James H Rose,John R Smith,Francisco Guinea et al.Physical Review B[J],1984,29:2963
    [13]Baskes M I.Physical Review B[J],1992,46:2727
    [14]Baskes M I.Materials Chemistry and Physics[J],1997,50:152
    [15]Lee Byeong-Joo,Shim Jae-Hyeok,Baskes M I.Physical Review B[J],2003,68:144112
    [16]Lee Byeong-Joo,Baskes M I,Kim Hanchul et al.Physical Review B[J],2001,64:184 102
    [17]Shim Jae-Hyeok,Ko Won-Seok,Kim Ki-Hyun et al.Journal of Membrane Science[J],2013,430(3):234
    [18]Zhang Mingyi(张明义),Yang Kun(杨坤),Chen Zheng(陈铮)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2013,42(7):1531
    [19]Zhang Mingyi(张明义),Yang Kun(杨坤),Chen Zheng(陈铮)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2012,41(8):1376
    [20]Hu J,Shi Y N,Sauvage X et al.Science[J],2017,355:1292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700