纳米TiO_2电子传输层制备方法及其钙钛矿太阳能电池性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation Methods of Nano-TiO_2 Electron Transport Layers and Properties for Perovskite Solar Cells
  • 作者:梁晓平 ; 陈小强 ; 赵鸿滨 ; 杨志民 ; 魏峰 ; 屠海令
  • 英文作者:Liang Xiaoping;Chen Xiaoqiang;Zhao Hongbin;Yang Zhimin;Wei Feng;Tu Hailing;State key Laboratory of Advanced Materials for Smart Sensing,General Research Institute for Nonferrous Metals;Advanced Electronic Materials Institute,General Research Institute for Nonferrous Metals;
  • 关键词:钙钛矿太阳能电池 ; 旋涂法 ; 原子层沉积 ; 磁控溅射 ; 氧化钛 ; 电子传输层
  • 英文关键词:perovskite solar cells;;spin coating;;magnetron sputtering;;atomic layer deposition;;TiO_2;;electron transport layer
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:北京有色金属研究总院智能传感功能材料国家重点实验室;北京有色金属研究总院先进电子材料研究所;
  • 出版日期:2019-02-15
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.275
  • 基金:科技部转制科研院所创新能力专项资金(201427401)资助
  • 语种:中文;
  • 页:ZXJS201902008
  • 页数:6
  • CN:02
  • ISSN:11-2111/TF
  • 分类号:55-60
摘要
采用旋涂法(SC)、原子层沉积(ALD)和磁控溅射(MS)3种方法制备二氧化钛(TiO_2)致密籽晶层并生长TiO_2纳米柱层(TiO_2 nanorod layer),研究了由TiO_2致密层(TiO_2 compact layer)和TiO_2纳米柱层组成的纳米TiO_2层(nano-TiO_2 layer)的形貌结构及其作为电子传输层(ETL)对钙钛矿太阳能电池(PSCs)性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和原子力显微镜(AFM)对制备的纳米TiO_2层的结构、形貌进行了表征。研究发现采用磁控溅射制备的TiO_2籽晶层的表面粗糙度最大,为26.6 nm,有利于生长TiO_2纳米柱层,生长的金红石型晶体结构的TiO_2纳米柱具有最好的结晶性。采用紫外可见吸收光谱(ultravioletvisible absorption spectroscopy)对掺氟的SnO_2透明导电玻璃(FTO)/纳米TiO_2层/钙钛矿层结构的光吸收性能进行分析。采用电流-电压曲线(I-V曲线)对不同纳米TiO_2层的钙钛矿太阳能电池性能进行了测试分析。结果表明,与旋涂法、原子层沉积方法相比,采用磁控溅射制备的纳米TiO_2层作为电子传输层的钙钛矿太阳能电池具有最佳的转换效率。
        The morphological structure of nano-TiO_2 layers, containing TiO_2 compact layers and TiO_2 nanorod layers, and the effect of nano-TiO_2 layers as electron transport layers on the performance of perovskite solar cells were investigated. TiO_2 compact layers, which were prepared by spin coating, magnetron sputtering and atomic layer deposition respectively, were used as seed layers to grow TiO_2 nanorod layers. The structure and morphology of nano-TiO_2 layers was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and atomic force microscopy(AFM). It was indicated that the surface roughness of TiO_2 seed layer prepared by magnetron sputtering was the largest, which was 26.6 nm. TiO_2 seed layer prepared by magnetron sputtering was favorable for the growth of TiO_2 nanorod layer and the one with rutile crystalline had the best crystallinity. The optical absorption properties of the FTO/nano-TiO_2 layers/perovskite layer was analyzed by ultravioletvisible absorption spectroscopy. The performance of perovskite solar cells with different nano-TiO_2 layers was tested by current-voltage curve. The results showed that compared with spin coating and atomic layer deposition, perovskite solar cells with nano-TiO_2 layer prepared by magnetron sputtering had the best conversion efficiency.
引文
[1] Stranks S D, Nayak P K, Zhang W, Stergiopoulos T, Snaith H J. Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells [J]. Angewandte Chemie International Edition, 2015, 54(11): 3240.
    [2] Park N G. Perovskite solar cells: an emerging photovoltaic technology [J]. Materials Today, 2015, 18(2): 65.
    [3] Zhang W H, Cai B. Organolead halide perovskites: a family of promisingsemicon-ductor materials for solar cells [J]. Chinese Science Bulletin, 2014, 59(18): 2092.
    [4] Ke W, Fang G, Wang J, Qin P, Tao H, Lei H, Liu Q, Dai X, Zhao X. Perovskite solar cell with an efficient TiO2 compact film [J]. ACS Applied Materials & Interfaces, 2014, 6(18): 15959.
    [5] Zhang S, Lei L, Yang S, Li X, Liu Y, Gao Q, Gao X, Cao Q, Yu Y. Influence of TiO2 blocking layer morphology on planar heterojunction perovskite solar cells [J]. Chemistry Letters, 2016, 45(6): 592.
    [6] Yu Y, Li J, Geng D, Wang J, Zhang L, Andrew T L, Arnold M S, Wang X. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures [J]. ACS Nano, 2015, 9(1): 564.
    [7] Qin P, Paulose M, Dar M I, Moehl T, Arora N, Gao P, Varghese O K, Gr?tzel M, Nazeeruddin M K. Stable and efficient perovskite solar cells based on titania nanotube arrays [J]. Small, 2015, 11(41): 5533.
    [8] Wang X, Fang Y, He L, Wang Q, Wu T. Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells [J]. Materials Science in Semiconductor Processing, 2014, 27: 569.
    [9] Wang Y J, Guo L, Li Z X, Yu H Y, Feng C G. Synthesis of one dimensional quadrangular Prism Bi2O3 nanorods by reverse microemulsion and optical properties [J]. Chinese Journal of Rare Metals, 2018, 42(6): 561.(王亚军, 郭梁, 李泽雪, 于海洋, 冯长根. 一维四棱柱状Bi2O3纳米棒的微乳法合成及光性能 [J]. 稀有金属, 2018, 42(6): 561.)
    [10] Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Park N G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer [J]. Nano Letters, 2013, 13(6): 2412.
    [11] Fakharuddin A, Giacomo F D, Ahmed I, Wali Q, Brown T M, Jose R. Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells [J]. Journal of Power Sources, 2015, 283: 61.
    [12] Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture N P, Cui G. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells [J]. Angewandte Chemie International Edition, 2015, 54(33): 9705.
    [13] Wang S, Yuan W, Meng Y S. Spectrum-dependent spiro-OMeTAD oxidization mechanism in perovskite solar cells [J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24791.
    [14] Nayak J, Prabakar K, Park J W, Kim H. Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films [J]. Electrochimica Acta, 2012, 65: 44.
    [15] Li B. Synthesis of TiO2 Nanowires Arrays on Deverse Substrates and the Photocatalytic Performance [D]. Hangzhou: Zhejiang University, 2014. 31. (李擘. 基于不同衬底二氧化钛纳米线阵列的制备及光催化性能 [D]. 杭州: 浙江大学, 2014. 31.)
    [16] Wang P, Li G C. Crystallography Tutorial [M]. Beijing: National Defence Industry Press, 2014. 15.(王萍, 李国昌. 结晶学教程 [M]. 北京: 国防工业出版社, 2014. 15.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700