硬质合金微槽车刀切削过程切削力和切削温度研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Cutting Force and Temperature with Micro-grooved Carbide Turning Tool
  • 作者:蒋宏婉 ; 袁森 ; 任仲伟 ; 陈海虹 ; 邵芳
  • 英文作者:Jiang Hongwan;Yuan Sen;Ren Zhongwei;Chen Haihong;Shao Fang;College of Mechanical Engineering,Guizhou Institute of Technology;
  • 关键词:硬质合金微槽车刀 ; 切削力 ; 切削温度 ; 切削试验 ; 仿真
  • 英文关键词:micro-grooved carbide turning tool;;cutting force;;cutting temperature;;cutting experiment;;simulation
  • 中文刊名:GJJS
  • 英文刊名:Tool Engineering
  • 机构:贵州理工学院;贵州大学;
  • 出版日期:2018-09-20
  • 出版单位:工具技术
  • 年:2018
  • 期:v.52;No.541
  • 基金:国家自然科学基金(51765009)
  • 语种:中文;
  • 页:GJJS201809023
  • 页数:4
  • CN:09
  • ISSN:51-1271/TH
  • 分类号:64-67
摘要
切削力和切削温度是评价刀具切削性能的重要指标,也是影响刀具耐用度的关键因素。通过切削试验和切削仿真,对比分析了自主研发的硬质合金微槽车刀和原车刀的切削力和切削温度。结果表明:与原车刀相比,微槽车刀的主切削力降低了约5. 1%;进给抗力和切深抗力都有所增加,增幅分别为37. 5%和2. 1%;微槽的置入可增大温度分布曲线的局部波动性,并提高其整体平稳性。本文研究结论可为该硬质合金微槽车刀的后期研究提供理论支撑。
        The cutting force and temperature are important indexes to evaluate the performance of turning tools,and are also the key factors affecting the tool life. Through cutting test and simulation,the cutting force and temperature of selfdeveloped micro-grooved carbide turning tools and the original turning tools are compared and analyzed. The results show that,compared with the original turning tool,the main cutting force of the micro-grooved turning tool is reduced by about 5. 1%,and the feed resistance and depth resistance are increased by 37. 5% and 2. 1% respectively,and the insertion of the microgroove can increase the local fluctuation of the temperature distribution curve and while improving its overall stability. The research conclusion could provide a theoretical support for the later research of the micro-grooved carbide turning tool.
引文
[1]李彬,邓建新,段振兴,等.考虑材料与摩擦特性的切削温度场仿真与试验[J].机械工程学报,2010,46(21):106-112.
    [2]谢晋,罗敏健,吴可可,等. CBN车刀前刀面微沟槽结构磨削及其对干切削温度的影响[J].机械工程学报,2014,50(11):192-197.
    [3]宋文龙,邓建新,吴泽,等.镶嵌固体润滑剂的自润滑刀具切削温度研究[J].农业机械学报,2010,41(1):205-210.
    [4]李飞,冮铁强,姚斌,等.硬质合金可转位刀具刃口切削综合仿真研究[J].工具技术,2013,47(2):13-19.
    [5]潘永智,艾兴,唐志涛,等.基于切削力预测模型的刀具几何参数和切削参数优化[J].中国机械工程,2008,19(4):428-431.
    [6]谭光宇,刘广军,李振加,等.复杂槽型铣刀片三维温度场分析及其模糊综合评价[J].机械工程学报,2004,40(3):106-110.
    [7]覃康才,冯可芹,孙兰,等.减摩槽刀片切削过程的Deform仿真[J].工具技术,2011,45(2):57-59.
    [8]唐德文,王成勇,胡映宁,等.高速切削过程数值模拟的研究进展[J].系统仿真学报,2009,21(19):5961-5970.
    [9]Shu S,Cheng K,Ding H,et al. An innovative method to measure the cutting temperature in process by using an internally cooled smart cutting tool[J]. Journal of Manufacturing Science and Engineering,2013,135(6):61018.
    [10]Sulaiman S E A S,Roshan A,Borazjani S. Effect of cutting parameters on cutting temperature of Ti Al6V4 alloy[J].Applied Mechanics and Materials,2013,392(72):68-72.
    [11]Sugita N,Ishii K,Furusho T,et al. Cutting temperature measurement by a micro-sensor array integrated on the rake face of a cutting tool[J]. CIRP Annals-Manufacturing Technology,2015,64(1):77-78.
    [12]Courbon C,Mabrouki T,Rech J. On the existence of a thermal contact resistance at the tool-chip interface in dry cutting of AISI 1045:Formation mechanisms and influence on the cutting process[J]. Applied Thermal Engineering,2013,50(1):1311-1325.
    [13]Li K,Liang S Y. Modeling of cutting temperature in near dry machining[J]. Journal of Manufacturing Science and Engineering,2006,128(2):416-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700