微泡沫在高温高盐油藏中的驱油作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microfoam Flooding Effect in High Temperature and High Salinity Reservoir
  • 作者:史胜龙 ; 王业飞 ; 王振彪 ; 阳建平 ; 周代余 ; 李忠鹏 ; 丁名臣
  • 英文作者:SHI Shenglong;WANG Yefei;WANG Zhenbiao;YANG Jianping;ZHOU Daiyu;LI Zhongpeng;DING Mingchen;School of Petroleum Engineering,China University of Petroleum(East China);Research Institute of Exploration and Development,Tarim Oilfield Branch Company,PetroChina;
  • 关键词:微泡沫 ; 稳定性驱油机理 ; 波及体积 ; 高温高盐油藏
  • 英文关键词:microfoam flooding;;stability;;displacement mechanism;;sweep efficiency;;high temperature and high salinity reservoir
  • 中文刊名:YJHX
  • 英文刊名:Oilfield Chemistry
  • 机构:中国石油大学(华东)石油工程学院;中国石油塔里木油田分公司勘探开发研究院;
  • 出版日期:2017-04-10 14:41
  • 出版单位:油田化学
  • 年:2017
  • 期:v.34;No.131
  • 基金:长江学者和创新团队发展计划项目“复杂油藏开发和提高采收率的理论与技术”(项目编号IRT1294);; 中央高校基本科研业务费专项资金资助“微泡沫体系的构筑及性能评价”(项目编号15CX06030A);; 中国石油天然气股份有限公司重大专项“塔里木油田勘探开发关键技术”(项目编号2014E-2107)
  • 语种:中文;
  • 页:YJHX201701021
  • 页数:7
  • CN:01
  • ISSN:51-1292/TE
  • 分类号:100-106
摘要
针对普通泡沫在高温高盐油藏中稳定性弱、驱油效果差的问题,采用将气体和起泡剂溶液(5000 mg/L甜菜碱表面活性剂SL1+5000 mg/L黄原胶XG)同时注入填砂管泡沫发生器的方法制备了一种稳定性强、尺寸细微的微泡沫体系,即黄原胶稳定的微泡沫。通过微观可视化模型对比了普通微泡沫(5000 mg/L SL1)与黄原胶稳定的微泡沫在原油存在条件的下稳定性差异,分析了驱油机理,借助填砂管模型对比了两种微泡沫的驱油性能。微观实验结果表明:气泡液膜中吸附的黄原胶增加了微泡沫液膜厚度,有效抑制了气泡聚并和液膜排液,使黄原胶稳定的微泡沫具有更强的稳定性和耐油能力。微泡沫越稳定,微观波及体积越高、采油效率越高。微泡沫主要的驱油机理为直接驱替机理、乳化机理、同向液膜流动机理、逆向液膜流动机理。物模实验结果表明,在160 g/L矿化度、90℃条件下,黄原胶稳定的微泡沫驱的采收率可在水驱基础上提高22.9%,比普通微泡沫驱高15.2%。
        Aimed at the problems of poor stability and worse oil displacement performance of common foam,a xanthan gum-stabilized microfoam with excellent stability and fine particle size was prepared by using a sandpack foam generator with co-flowing gas and foaming solution(5000 mg/L betaine surfactant SL1 + 5000 mg/L xanthan gum). Stability of the common microfoam(5000 mg/L SL1)and the xanthan gum-stabilized microfoam with the presence of a crude oil was studied and the displacement mechanism was analyzed by micromodel,the oil displacement performance of the microfoam was evaluated by sandpack flooding tests. The experimental results showed that xanthan gum-stabilized microfoam had better oil tolerance than common microfoam did,due to the adsorption of xanthan gum on the surface of the bubble,the absorption of xanthan gum in lamellas increased thickness of the microfoam lamella and inhibited bubble coalescence and liquid drainage. The displacement efficiency strongly depended on the stability of the microfoam,when the microfoam became more stable,the microscopic sweep volume became bigger and the oil recovery efficiency became higher. The main microscopic displacement mechanisms of microfoam flooding for enhanced oil recovery was that direct displacement,emulsification,co-current film flow and counter-current film flow. Xanthan gum-stabilized microfoam flooding increased oil recovery by 22.9%,which was 15.2% higher than that for common microfoam at salinity of 160 g/L and at the temperature of 90℃.
引文
[1]程利民,王业飞,何宏,等.泡沫调驱的研究与应用进展[J].油田化学,2013,30(4):620-624.
    [2]王其伟.泡沫驱油发展现状及前景展望[J].石油钻采工艺,2013,35(2):94-97.
    [3]BJORNDALEN N,KURU E.Physico-chemical characterization of aphron based drilling fluids[J].J Can Pet Technol,2008,47(11):15-21.
    [4]AROONSRI A,WORTHEN A J,HARIZ T,et al.Conditions for generating nanoparticle-stabilized CO2foams in fracture and matrix flow[R].SPE 166319,2013:1-10.
    [5]STEVENSON P.Inter-bubble gas diffusion in liquid foam[J].Curr Opin Colloid In,2010,15(5):374-381.
    [6]燕永利,何飞,张家明,等.单一非离子表面活性剂制备胶质气体泡沫的稳定性[J].高等学校化学学报,2008,29(10):2044-2048.
    [7]SAMUEL S R,KURU E,TRIVEDI J J.Design and developmentof aqueous colloidal gas aphrons for enhanced oil recoveryapplications[R].SPE 154518,2012:1-12.
    [8]KURU E,BJORNDALEN N,JOSSY E,et al.Reducing formationdamage with microbubble-based drilling fluid:understanding theblocking ability[J].J Can Pet Technol,2008,47(11),63-69.
    [9]DAI Y J,DENG T.Stabilization and characterization of colloidalgas aphron dispersions[J].J Colloid Interf Sci,2003,261(2):360-365.
    [10]QUENNOUZ N,RYBA M,ARGILLIER J F,et al.Microfluidicstudy of foams flow for enhanced oil recovery(EOR)[J].Oil Gas Sci Technol,2014,69(3):457-466.
    [11]史胜龙,王业飞,周代余,等.微泡沫体系直径影响因素及微观稳定性[J].东北石油大学学报,2016,40(1):103-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700