石墨烯超材料吸波结构3D打印
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3D Printing of Graphene Metamaterial Absorbing Structure
  • 作者:田小永 ; 尚振涛 ; 尹丽仙 ; 李涤尘
  • 英文作者:TIAN Xiaoyong;SHANG Zhentao;YIN Lixian;LI Dichen;State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University;Shaanxi Rapid Manufacturing Engineering Technology Research Center;
  • 关键词:石墨烯 ; 树脂基复合材料 ; 超材料 ; 3D打印 ; 微波吸收
  • 英文关键词:Graphene;;Resin matrix composites;;Metamaterial;;3D printing;;Microwave absorption
  • 中文刊名:HKGJ
  • 英文刊名:Aeronautical Manufacturing Technology
  • 机构:西安交通大学机械制造系统工程国家重点实验室;陕西省快速制造工程技术研究中心;
  • 出版日期:2019-03-01
  • 出版单位:航空制造技术
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金(51575430,51105300,61671466);; 创新人才推进计划–青年科技新星项目(2017KJXX–14);; 陕西省快速制造工程技术研究中心项目(2017HBGC–06)
  • 语种:中文;
  • 页:HKGJ201905003
  • 页数:9
  • CN:05
  • ISSN:11-4387/V
  • 分类号:11-19
摘要
石墨烯增强树脂基复合材料密度低,具有优良的电磁波吸收性能,是极具应用前景的雷达隐身吸波材料,传统的石墨烯吸波复合材料制备工艺复杂,难以灵活制备复杂结构。超材料作为一种人工电磁介质,以材料自身电磁特性为基础,通过单胞结构设计,可实现高性能超材料微波吸收结构(MetaMaterial Absorber,MMA)的设计,利用3D打印技术复杂结构零件快速成型的优势,可实现树脂基MMA功能结构一体化制造。综述了石墨烯增强树脂基复合材料、3D打印超材料吸波性能的研究进展,提出一种基于木堆结构的3D打印石墨烯增强聚乳酸复合材料梯度超材料吸波结构,该结构在4.5~40GHz频段内,具有35.5GHz的超宽频带微波吸收性能(反射损耗低于–10dB)。
        Graphene reinforced resin matrix composites have low density and excellent electromagnetic wave absorption properties, and are highly promising radar stealth absorbing materials. However, traditional graphene absorbing composite materials have complicated processes, making it difficult to prepare and manufacture complex structures. As an artificial electromagnetic medium, metamaterial is designed based on the electromagnetic properties of the material, and can realize the design of high-performance metamaterial absorber(MMA) through the design of unit cell structure, and can achieve the integrated manufacture of resin matrix MMA functional structure, taking advantages of rapid prototyping for complex structural parts using 3 D printing technology. The research progress of the absorbing properties of graphene reinforced resin matrix composites and 3 D printing metamaterials is emphasized. A 3 D printed graphene reinforced polylactic acid composite gradient metamaterial absorbing structure based on wood pile structure is proposed. In the 4.5–40 GHz band, this structure has an ultra broadband microwave absorption performance of 35.5 GHz(reflection loss below –10 dB).
引文
[1]王豪,彭铮·基于/石墨烯的吸波材料应用研究[J].教练机,2017(3):46-50.WANG Hao, PENG Zheng·Application research of wave-absorbing material based on graphene[J]. Trainer,2017(3):46-50.
    [2]刘攀博·石墨烯-导电聚合物-磁性纳米粒子复合材料的制备及微波吸收性能的研究[D]·西安:西北工业大学,2015-LIU Panbo. Preparation and microwaveabsorption properties of graphene-conducting polymers-magnetic nanoparticles composites[D]. Xi'an:Northwestern Polytechnical University,2015-
    [3] ZHANG Y,WANG X, CAO M·Confinedly implanted NiFe2O4-rGO:cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption[J]. Nano Research, 2018,11(3):1426-1436.
    [4] YIN M,TIAN X Y,WU L L,et al.All-dielectric three-dimensional broadband Eaton lens with large refractive index range[J].Applied Physics Letters, 2014, 104:094101·
    [5] TIAN X Y,WU L L,YIN M,et al.Design and rapid fabrication of broadband wide-angle flattened Luneburg lens[J]·Journal of Mechanical Engineering,2016, 52(21):175-181·
    [6] STANSBURY J W, IDACAVAGE M J. 3D printing with polymers:challenges among expanding options and opportunities[J]·Dental Materials, 2016, 32(1):54-64-
    [7]田小永,侯章浩,张俊康,等·高性能树脂基复合材料轻质结构3D打印与性能研究[J]·航空制造技术,2017, 60(10):34-39-TIAN Xiaoyong, HOU Zhanghao,ZHANG Junkang, et al. Study on 3D printing process and performance of resin matrix composite lightweight structure[J]·Aeronautical Manufacturing Technology, 2017, 60(10):34-39·
    [8] TIAN X Y, YIN M, LI D C-3D printing:a useful tool for the fabrication of artificial electromagnetic(EM)medium[J]·Rapid Prototyping Journal, 2016, 22(2):251-257·
    [9] MILES P A, WESTPHAL W B, HIPPEL A V·Dielectric spectroscopy of ferromagnetic semiconductors[J]. Review of Modem Physics,1957, 29(3):279-307·
    [10] LI X, FENG J, DU Y, et al. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber[J]. Journal of Materials Chemistry A,2015.3:5535-5546.
    [11] SONG C, YIN X, HAN M,et al.Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties[J]·Carbon, 2017, 116:50-58·
    [12] KONG L, YIN X, YUAN X, et al. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane)composites[J]·Carbon,2014, 73:185-193.
    [13] CAO W Q, WANG X X, YUAN J, et al·Temperature dependent microwave absorption of ultrathin graphene composites[J].Journal of Materials Chemistry C, 2015, 38:10017-10022·
    [14] BAI X,ZHAI Y,ZHANG Y·Green approach to prepare graphene-based composites with high microwave absorption capacity[J]·The Journal of Physical Chemistry C,2011,115(23):11673-11677.
    [15] SINGH V K, SHUKLA A, PATRA M K, et al. Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite[J]. Carbon, 2012,50(6):2202-2208.
    [16]WANG T,LI Y,GENG S,et al.Preparation of flexible reduced graphene oxide/poly(vinyl alcohol)film with superior microwave absorption properties[J]·RSC Advances, 2015, 5:88958-88964·
    [17] AL-GHAMDI A A, AL-GHAMDI A A, AL-TURKI Y,et al. Electromagnetic shielding properties of graphene/acrylonitrile butadiene rubber nanocomposites for portable and flexible electronic devices[J]·Composites Part B:Engineering, 2016, 88:212-219-
    [18] REN F, ZHU G, WANG Y, et al·Microwave absorbing properties of graphene nanosheets/epoxy-cyanate ester resins composites[J]. Journal of Polymer Research,2014,21:585-
    [19] JOSEPH N, VARGHESE J,SEBASTIAN M T. Graphite reinforced polyvinylidene fluoride composites an efficient and sustainable solution for electromagnetic pollution[J]·Composites Part B:Engineering,2017, 123:271-278-
    [20] MENG F,WANG H,HUANG F,et al-Graphene-based microwave absorbing composites:a review and prospective[J]·Composites Part B:Engineering, 2018,137:260-277-
    [21] CHEN C Y,PU N W, LIU Y M, et al. Remarkable microwave absorptionperformance of graphene at a very low loading ratio[J]·Composites Part B:Engineering, 2017,114:395-403.
    [22] CHEN X,MENG F,ZHOU Z,et al·One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties[J]·Nanoscale,2014, 6(14):8140-8148.
    [23] WANG L,HUANG Y,HUANG H·N-doped graphene@polyaniline nanorod arrays hierarchical structures:synthesis and enhanced electromagnetic absorption properties[J]·Materials Letters,2014, 124:89-92.
    [24] WANG L, HUANG Y, LI C, et al.A facile one-pot method to synthesize a threedimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber[J]·Physical Chemistry Chemical Physics, 2015, 17(3):2228-2234-
    [25] HAN M, YIN X, KONG L, et al.Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A,2014,39:16403-16409-
    [26] SUN D, ZOU Q, WANG Y, et al·Controllable synthesis of porous Fe304@Zn0sphere decorated graphene for extraordinary electromagnetic wave absorption[J]·Nanoscale,2014, 6(12):6557-6562-
    [27]张明习·超材料概论[M]·北京:国防工业出版社,2014.ZHANG Mingxi·Introduction to metamaterials[M]·Beijing:National Defense Industry Press, 2014·
    [28] LANDY N I,SAJUYIGBE S,MOCK J J,et al. Perfect metamaterial absorber[J]·Physical Review Letters, 2008,100(20):207402.
    [29] DING F, CUI Y, GE X, et al. Ultrabroadband microwave metamaterial absorber[J].Applied Physics Letters,2012, 100(10):103506-
    [30] GU C, QU S, PEI Z, et al. A wideband, polarization-insensitive and wide-angle terahertz metamaterial absorber[J]·Progress in Electromagnetics Research Letters, 2010,17(11):171-179.
    [31] ZHANG Y, DUAN J,ZHANG B,et al. A flexible metamaterial absorber with four bands and two resonators[J]·Journal of Alloys&Compounds, 2017, 705:262-268.
    [32] LIU X, LAN C,BI K,et al. Dual band metamaterial perfect absorber based on Mie resonances[J]·Applied Physics Letters,2016, 109(6):062902.
    [33] ZHU J, MA Z, SUN W, et al·Ultra-broadband terahertz metamaterialabsorber[J]·Applied Physics Letters, 2014,105(2):4773-4779.
    [34] JIANG W,YAN L,MA H,et al.Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb[J].Scientific Reports, 2018, 8(1):4817.
    [35] YIN L, DOYHAMBOUREFOUQUET J, TIAN X Y, et al.Design and characterization of radar absorbing structure based on gradient-refractive-index metamaterials[J]. Composites Part B:Engineering, 2018, 132:178-187·
    [36]熊益军,王岩,王强,等·一种基于3D打印技术的结构型宽频吸波超材料[J]·物理学报,2018,67(8):106-113·XIONG Yijun, WANG Yan, WANG Qiang, et al. Structural broadband absorbing metamaterial based on three-dimensional printing technology[J]·Acta Physica Sinica,2018, 67(8):106-113.
    [37] SARENI B, KRAHENBUHL L,BEROUAL A, et al. Effective dielectric constant of periodic composite materials[J]·Journal of Applied Physics, 1996, 80(3):1688-1696·

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700