电子回旋共振等离子体推力器放电机理数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Discharge Mechanism of Electron Cyclotron Resonance Plasma Thruster
  • 作者:陈留伟 ; 夏广庆 ; 周念东 ; 吴秋云 ; 邹存祚
  • 英文作者:CHEN Liu-wei;XIA Guang-qing;ZHOU Nian-dong;WU Qiu-yun;ZOU Cun-zuo;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology;
  • 关键词:电推进 ; 电子回旋共振(ECR) ; 微波放电 ; 漂移-扩散 ; 仿真模拟
  • 英文关键词:Electric propulsion;;Electron cyclotron resonance(ECR);;Microwave discharge;;Drift-diffusion;;Simulation
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:大连理工大学工业装备结构分析国家重点实验室;
  • 出版日期:2018-07-25 13:34
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.255
  • 基金:国家自然科学基金(11675040;11575003);; 辽宁省自然科学基金(201602175)
  • 语种:中文;
  • 页:TJJS201809028
  • 页数:9
  • CN:09
  • ISSN:11-1813/V
  • 分类号:230-238
摘要
电子回旋共振等离子体推力器(ECRPT)是一种高比冲、高效率且结构简单的新型电磁式推力器。为了研究推力器的放电原理和工作机制,采用漂移-扩散流体模拟方法,仿真模拟了微波等离子体放电过程。仿真结果表明,电子数密度达到10~(16)~10~(17)m~(-3)数量级,氙气的电子数密度比氩气高50%;电子数密度、碰撞功率损耗均随着计算域内压强的增大而增大,电子温度随压强的增大而减小;电子数密度、碰撞功率损耗随着入射微波功率的增大而增大。在未来ECRPT的实际应用中,可以通过使用氙气,适当增大推力器腔内压强以及入射微波功率,使其具有最佳的推力、比冲和工作效率。
        Electron Cyclotron Resonance Plasma Thruster(ECRPT) is a new type of electromagnetic thruster with high specific impulse,high efficiency and simple structure.In order to study the discharge principle and working mechanism of the thruster,the microwave plasma discharge process is simulated by the drift-diffusion fluid simulation method.The simulation results show that the number of electrons reaches the order of 10~(16)~10~(17) m~(-3).They also show the electron density of xenon is 50% higher than that of argon.The electron density and the collision power loss increase with the increase of the pressure in the calculation domain.And the electron temperature decreases with the increase of the pressure.The electron number density and the collision power loss increase with the increase of the incident microwave power.In the future application of ECRPT,by using xenon,the appropriate increase in the thrust chamber cavity pressure and incident microwave power is advised,so that it has the best propulsion,specific impulse and work efficiency.
引文
[1]Gollor M,Weinberg S,Boss M,et al.Electric Propulsion Electronics Activities in Europe[C].Hartford:AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,2013.
    [2]Tverdokhlebov S,Semenkin A,Garkusha V,et al.Overview of Electric Propulsion Activities in Russia[C].Fort Lauderdale:40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2004.
    [3]陈茂林,毛根旺,夏广庆,等.电子回旋共振离子推力器栅极光学系统的PIC/MCC模拟[J].推进技术,2012,33(1):150-154.(CHEN Mao-lin,MAO Genwang,XIA Guang-qing,et al.PIC/MCC Simulation of Gate Optical System for Electron Cyclotron Resonance Ion Thruster[J].Journal of Propulsion Technology,2012,33(1):150-154.)
    [4]汤明杰,杨涓,金逸舟,等.微型电子回旋共振离子推力器离子源结构优化实验研究[J].物理学报,2015,64(21):319-325.
    [5]Kuninaka H,Nishiyama K,Funaki I,et al.Powered Flight of Electron Cyclotron Resonance Ion Engines on Hayabusa Explorer[J].Journal of Propulsion and Power,2007,23(3):544-551.
    [6]Funaki I,Kuninaka H,Toki K.Plasma Characterization of a 10cm Diameter Microwave Discharge Ion Thruster[J].Journal of Propulsion and Power,2004,20(4):718-727.
    [7]成玉国,夏广庆,韩亚杰.发散磁场中等离子体加速和推进性能数值研究[J].推进技术,2017,38(8):1914-1920.(CHENG Yu-guo,XIA Guang-qing,HAN Ya-jie.Numerical Investigation on Plasma Acceleration Process and Propulsion Performance on Divergence Magnetic Field[J].Journal of Propulsion Technology,2017,38(8):1914-1920.)
    [8]Jarrige J,Elias D,Packan D.Measurement of Ion Acceleration in the Magnetic Nozzle of an Ecr Plasma Thruster[R].Space Propulsion-2014-2980896.
    [9]杨涓,石峰,杨铁链,等.电子回旋共振离子推力器放电室等离子体数值模拟[J].物理学报,2010,59(12):8701-8706.
    [10]罗立涛,杨涓,金逸舟,等.ECR中和器改进试验研究[J].中国空间科学技术,2016,36(1):35-42.
    [11]Brainerd J,Reisz A.Electron Cyclotron Resonance Propulsion[C].Nashville:AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,2013.
    [12]Jarrige J,Elias P Q,Cannat F,et al.Performance Comparison of an ECR Plasma Thruster using Argon and Xenon as Propellant Gas[C].Washington:IEPC,2013:63–71.
    [13]Ueno K,Mori D,Takao Y,et al.Particle-in-Cell Simulation of a Micro ECR Plasma Thruster[C].Honolulu:APS Meeting,2015.
    [14]Cannat F,Lafleur T,Jarrige J,et al.Optimization of a Coaxial Electron Cyclotron Resonance Plasma Thruster with an Analytical Model[J].Physics of Plasmas,2015,22(5).
    [15]Jarrige J,Elias P Q,Packan D,et al.Characterization of a Coaxial ECR Plasma Thruster[C].San Diego:AIAA Plasma dynamics and Lasers Conference,2013.
    [16]Megíamacías A,Cortázar O D,Vizcaín-odejulián A.Influence of Microwave Driver Coupling Design on Plasma Density at Testbench for Ion Sources Plasma Studies,a 2.45GHz Electron Cyclotron Resonance Plasma Reactor[J].Review of Scientific Instruments,2014,85(3).
    [17]Ganguli A,Tarey R,Arora N,et al.Development and Studies on a Compact Electron Cyclotron Resonance Plasma Source[J].Plasma Sources Science and Technology,2016,25(2).
    [18]陈兆权,王冬雪,夏广庆,等.微波放电等离子体点火与助燃研究进展[J].固体火箭技术,2014,37(1):63-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700